Synthesis of High-Energy-Density Fuel over Mesoporous Aluminosilicate Catalysts

Jongjin Kim¹, Beomseok Shim¹, Gayoung Lee¹, Jeongsik Han², and Jong-Ki Jeon¹,*

¹ Department of Chemical Engineering, Kongju National University, Cheonan 31080, Korea
² Agency for Defense Development, Daejeon 34186, Korea

*E-mail: jkjeon@kongju.ac.kr

High-energy–density fuels (HEDFs) have attracted considerable attention due to their advantages such as high volumetric energy content and good stability. Compared with refined aviation fuels, combusting equal volume of high-energy–density fuel can generate more propulsion [1,2]. Because norbornadiene dimer (NBDD) has a high molecular hydrogen/carbon ratio and is a multi-cyclic hydrocarbon, it has a compact structure with a high density level. Moreover, NBDD causes additional strain energy and has therefore received a considerable amount of attention as an ideal HEDF candidate. NBDD is prepared by dimerization using norbornadiene (NBD) as a raw material, and nearly 14 different types of isomers can be produced.

Currently, a homogeneous catalyst is being used in the NBDD manufacturing process. But in this process, the cost of a catalyst is high and the separation process is quite complicated [3-5]. If the homogeneous catalyst is replaced with the heterogeneous catalyst, in this process, recovery and reuse of a catalyst are possible and the cost of catalyst can be innovatively reduced [6].

In this study, we used mesoporous Al-KIT-6 as a heterogeneous catalyst in synthesis of NBDD from NBD. The effects of aluminum grafting over KIT-6 on the catalyst characteristics were studied with respect to the synthesis of NBDD. Physical and chemical properties of catalyst were analyzed by N₂ adsorption, temperature-programmed desorption of ammonia, and infrared spectroscopy of adsorbed pyridine.

The Al-KIT-6 prepared through Al grafting over KIT-6 was shown to have a well-arranged mesoporous structure, a large surface area, and a large pore size. Grafting of Al on KIT-6 generated Lewis acid sites with weak strength. The NBDD yield over the Al-KIT-6 catalysts was higher than that over KIT-6 during NBD dimerization (Fig. 1). It might be attributed to the higher number of acid sites in the Al-KIT-6 catalyst.

![NBD conversion and NBDD yield over KIT-6 and Al-KIT-6 catalysts](image)

Fig.1 NBD conversion and NBDD yield over KIT-6 and Al-KIT-6 catalysts catalysts (reactant(NBD) weight = 90 g, catalyst weight = 3.85 g, temperature = 250 °C, reaction time = 12 h).

Acknowledgments: We acknowledge financial support from ADD’s fundamental project program.

REFERENCES