Highly Concentrated CO Evolution for Photocatalytic Conversion of CO₂ by H₂O as an Electron Donor

<u>Kentaro TERAMURA</u>^{1,2,*}, Kazutaka HORI¹, Yosuke TERAO¹, Hiroyuki TATSUMI¹, Zeai HUANG¹, Shoji IGUCHI¹, Zheng WANG¹, Hiroyuki ASAKURA^{1,2}, Saburo

HOSOKAWA^{1,2}, Tsunehiro TANAKA^{1,2,*} ¹Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyoku, Kyoto 615–8510, Japan

²Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615–8520, Japan

*E-mail: teramura@moleng.kyoto-u.ac.jp

The reduction in human-induced emissions of CO₂ from automobiles, factories, power stations, etc., over the next 15 years is currently one of the most important issues facing the planet. The Intergovernmental Panel on Climate Change (ICPP) warned that temperature change has to be controlled lower than 2 degrees Celsius relative to average temperature before the Industrial Revolution by the end of century. It has also warned that if no action is taken to deal with the rate of CO₂ emissions. this will result grave in consequences for the planet, leading to sea surface elevation and desertification. We should therefore attempt to develop industrial processes using CO₂ as a feedstock in order to build a sustainable society in the near future.

We previously reported that the several oxides such as ZrO₂, MgO, and Ga₂O₃ show activity in the production of CO from the photocatalytic conversion of CO₂ in the presence of H_2 and CH_4 . Linear CO_2 molecules adsorbed on the surface of the solid bases are converted into unique structures, such as bicarbonate and carbonate species possessing lattice oxygen atoms. We believe that the process involves the capture and distortion of CO₂ upon adsorption on a solid base through activation by photoirradiation. Unstable CO₂ species adsorbed onto the surface can then be reduced by electrons with protons derived from H₂O (CO₂ + $2e^{-}$ + $2H^{+}$ \rightarrow CO + H₂O). It is well-known that the

catalytic sites are easily poisoned by H₂O. If H₂O does function as the electron donor, then it is important to obtain a stoichiometric ratio between the amount of O_2 evolved and the amount of CO₂ reduced. Moreover, the reduction of H⁺, released from H₂O molecules, usually competes with CO₂ reduction when several heterogeneous materials are used as photocatalysts for the reduction of CO₂ with H_2O . Generally, the production of H_2 via the reduction of H^+ is the dominant pathway. Therefore, to achieve high selectivity in the photocatalytic conversion of CO₂ with H₂O, the electrons generated through the oxidation of H₂O must be controlled to selectively. These days, We found that $ZnGa_2O_4/Ga_2O_3$,[1, 2] La₂Ti₂O₇,[3] SrO/Ta₂O₅,[4] ZnGa₂O₄,[5] $ZnTa_2O_6$,[6] and $Sr_2KTa_5O_{15}$ [7] with the modification of Ag cocatalyst exhibit good conversion of CO₂ and high selectivity toward CO evolution for the photocatalytic conversion of CO₂ by H₂O as an electron donor. The selectivity toward CO evolution (%) = $100 \times$ $R_{\rm CO}$ / ($R_{\rm CO}$ + $R_{\rm H2}$) where $R_{\rm CO}$ and $R_{\rm H2}$ was formation rates of CO and H₂, respectively. An isotope experiment using ¹³CO₂ and mass spectrometry clarified that the carbon source of the evolved CO is not the residual carbon species on the photocatalyst surface, but the CO₂ introduced in the gas phase. In addition, stoichiometric amounts of O2 evolved were generated together with CO over all the photocatalysts as shown above.

REFERENCES

[1] K. Teramura, Z. Wang, S. Hosokawa, Y. Sakata, T. Tanaka, Chem. - Eur. J., 20 (2014) 9906-9909.

[2] Z. Wang, K. Teramura, Z. Huang, S. Hosokawa, Y. Sakata, T. Tanaka, Catal. Sci. Technol., 6 (2016) 1025-1032.

[3] Z. Wang, K. Teramura, S. Hosokawa, T. Tanaka, Appl. Catal., B, 163 (2015) 241-247.

[4] K. Teramura, H. Tatsumi, Z. Wang, S. Hosokawa, T. Tanaka, Bull. Chem. Soc. Jpn., 88 (2015) 431-437.

[5] Z. Wang, K. Teramura, S. Hosokawa, T. Tanaka, J. Mater. Chem. A, 3 (2015) 11313-11319.

[6] S. Iguchi, K. Teramura, S. Hosokawa, T. Tanaka, Catal. Sci. Technol., 6 (2016) 4978-4985.

[7] Z. Huang, K. Teramura, S. Hosokawa, T. Tanaka, Appl. Catal., B, 199 (2016) 272-281.