Study of Carbon-Nafion-Membrane Catalyst for Synthesis of Pure H₂O₂ Aqueous Solutions

Ichiro Yamanaka,¹* Yu Tamada,¹ Daisuke Hiraki,¹ Hitoshi Ogihara¹ ¹ Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo, 1528550, Japan *E-mail: yamanaka.i.aa@m.titech.ac.jp

Application of a hydrogen permeable membrane in chemical process has been expected because there is a great advantage for reduction of energy consumption. Previous application of hydrogen permeable membrane was limited for Pd based materials over 673 K.¹⁾ Most of all works were studied for H₂ production by steam forming at higher temperatures. A part of works described the hydrogen permeation at 298 K.²⁾ They reported applications for the direct synthesis of H₂O₂ using O₂ and permeated H₂; however, it can not prevent a participation of pin halls and cracks of the Pd membrane by the hydrogen embrittlement. Purposes of this work are to develop a new type of hydrogen permeable membrane and to perform direct synthesis of pure H_2O_2 aqueous solutions from O_2 and H_2 .

Hydrogen permeable membrane developed in this work consists three sheets, oxidationcatalyst sheet, proton and electron conductive sheet and reduction-catalyst sheet, as shown in Figure 1. This three-layered membrane was fabricated as below. The electron and proton conductive membrane was prepared by a

method casting using a paste of carbon and Nafion materials. The paste was prepared from carbon fiber (VGCF) powder 20wt%and Nafion solution ultrasonic by mixing. The paste was soaked in a flat-bottom

Teflon-vessel and

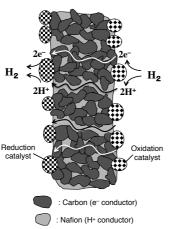


Fig. 1. Hydrogen permeable membrane.

dried up at 60 °C. The black composite sheet was cut a round shape of 30 ø. Oxidation and reduction catalyst sheets (2.0 cm²) were prepared from 50 wt% Pt/XC72, VGCF and PTFE powders. The composite sheet was sandwiched with Pt/XC72 sheets and these were connected by hot-pressing at 140°C.

Table shows effects of various 1 combinations of the three-layered membrane on permeation rates of H₂ and He from the oxidation-catalyst side to the reductioncatalyst side. To be note results in run 1 using the typical membrane, a high permeation rate of H₂ and a low permeation rate of He were observed. A ratio of the permeation rates of H₂ and He was 125. When XC72 without Pt was used for reduction-catalyst sheet (run 2), a very low permeation rate of H₂ as low as that of He was observed and the H₂/He ratio was unity. When XC72 alone was used for oxidation-catalyst sheet (run 3), a very similar result to the run 2 was obtained. When a pure H₂ of 1 atm was introduced to the oxidation catalyst side, a fast permeation rate of H₂ was observed (run 4).

Table 1. Permeation of a gas mixture of H_2 and He through the three-layered membrane.

Run	Red-Catal.	Ox-Catal., gases	Perm. rate / μ mol min ⁻¹ cm ⁻²		
			H_2	He	H ₂ /He
		Pt/XC72,			
1	Pt/XC72	H ₂ +He	175.1	1.4	125
		Pt/XC72,			
2	XC72	H ₂ +He	1.4	1.4	1
		XC72,			
3	Pt/XC72	H ₂ +He	1.5	1.5	1
		Pt/XC72,			
4	Pt/XC72	H_2	250	no	—

A reduction catalyst sheet prepared from a catalyst ink of the pyrolyzed Co-TPP/VGCF and Nafion solutions was used for a direct synthesis of pure H_2O_2 aqueous solution from H_2 and O_2 . Products were only H_2O_2 and water in the reduction-catalyst compartment and no H_2 . The maxima of the concentration of 3.8 mol dm⁻³ and the selectivity of 42% were achieved.³⁾

REFERENCES

[1] V. Gryaznov, Catal. Taday, 1999, 51, 391.

[2] V.R. Choudhary, et al. Angew. Chem. Int. Ed. 2001, 40, 1776.

[3] I. Yamanaka, et al. ChemSelect, 2017, 2, 464.