Water Splitting and CO₂ Fixation on Visible-Light-Responsive Rutile TiO₂-based Photocatalysts

Kazuhiko Maeda¹, Akinobu Nakada¹, Koki Ishimaki¹, Junie Jhon M. Vequizo², Akira Yamakata² and Osamu Ishitani¹ Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, Japan ² Graduate School of Engineering, Toyota Technological Institute, Nagoya, Japan *E-mail: maedak@chem.titech.ac.jp

Water splitting and CO₂ fixation using semiconductor photocatalysts are of particular importance from the viewpoint of solar-to-fuel conversion energy toward artificial photosynthesis. To achieve these reactions, it is important to improve both bulk and surface properties of a photocatalyst so as to suppress electron-hole recombination and promote surface redox catalysis. In this talk, recent progress on the development of new photocatalysts that are active for such artificial photosynthetic reactions will be given.

Metal oxides such as TiO₂ are well-known semiconductor photocatalysts, but the wide band-gap restricts their application to solar energy conversion. Since the nitrogen 2p orbital has a higher potential energy than the oxygen 2p orbital, nitrides and oxynitrides are of interest as visible-light-driven photocatalysts [1]. We developed Ta/Ncodoped rutile TiO₂ for visible-light-driven water oxidation. TiO2:Ta/N powders modified with a RuO₂ cocatalyst were active under visible light up to 540 nm for water oxidation to produce O₂ in the presence of reversible electron acceptors (IO₃⁻ or Fe³⁺), while TiO₂:N exhibited negligible activity. Results of timeresolved infrared absorption spectroscopy revealed that the codoping Ta with N into TiO₂ prolonged the lifetime of photogenerated free electrons, leading to high photocatalytic activity. We demonstrated that overall water splitting into H₂ and O₂ was achieved using TiO₂:Ta/N, in combination with a H₂evolution photocatalyst of SrTiO3:Rh and an Fe^{3+}/Fe^{2+} redox couple (Fig.1) [2]. TiO₂:Ta/N also served as a stable photoanode to oxidize water under visible light, and could be coupled to not only a H_2 evolution cathode but also a molecular photocathode for CO_2 reduction.

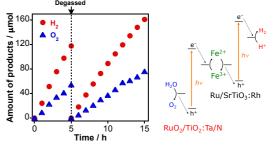


Fig.1 Typical time course of H_2 and O_2 evolution from mixtures of RuO_2 -loaded TiO₂:Ta/N (50 mg) and Ru/SrTiO₃:Rh (25 mg) dispersed in an aqueous solution (100 mL) containing FeCl₃ (1 mM) under visible light.

As another TiO_2 -based new photocatalyst, we explored that rutile TiO_2 modified with cobalt hydroxide nanoclusters was capable of harvesting visible light with wavelengths of up to 850 nm, and photocatalyzing water oxidation to produce molecular O_2 (Fig.2) [3]. To our knowledge, this system provides the first case of a photocatalytic material capable of water oxidation upon excitation by visible light up to such a long wavelength, even with the use of earth-abundant elements only.

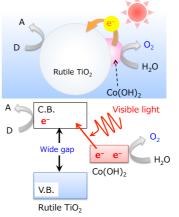


Fig. 2 Water oxidation under visible light using $Co(OH)_2$ -modified rutile TiO_2 .

REFERENCES

[1] K. Maeda and K. Domen, J. Phys. Chem. C, 111 (2007) 7851.

[2] A. Nakada, S. Nishioka, J. J. M. Vequizo, K. Muraoka, T. Kanazawa, A. Yamakata, S. Nozawa, H. Kumagai, S.-i. Adachi, O. Ishitani and K. Maeda, J. Mater. Chem. A, (2017) in press. DOI: 10.1039/C6TA10541F.

[3] K. Maeda, K. Ishimaki, Y. Tokunaga, D. Lu, M. Eguchi, Angew. Chem., Int. Ed., 55 (2016) 8309.