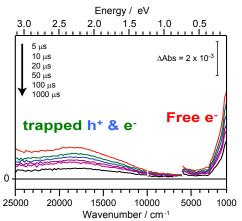
Difference in the Behavior of Photogenerated Electrons and Holes on Anatase and Rutile TiO₂ Powders

<u>Akira Yamakata</u>, Junie Jhon M. Vequizo, Hironori Matsunaga Toyota Technological Institute, Nagoya, Japan

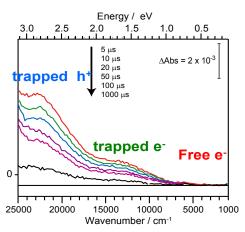
*E-mail: yamakata@toyota-ti.ac.jp

 TiO_2 is one of the most often used material as photocatalysts. In many reactions, anatase TiO_2 exhibits higher activity than rutile TiO_2 , but rutile TiO₂ exhibits higher activity for water oxidation. However, the mechanism responsible for the difference in their photocatalytic activity had been a longstanding question for more than 40 years. In this work, the mechanism that determines the difference in photocatalytic activities between anatase and rutile TiO₂ powders have been studied by femtosecond to millisecond time-resolved visible to mid-IR absorption spectroscopy [1-3].

Figure 1 shows time-resolved absorption spectra of anatase TiO₂ powders upon bandgap excitation. In the case of anatase TiO₂ powder, strong absorption was observed at 4000-1000 cm⁻¹, which is assigned to intraband transition of free electrons in the conduction band (CB) and/or excitation of shallowly trapped electrons to CB. We found that a considerable number of free electrons are surviving for longer than 1 ms. On the contrary, in the case of rutile TiO₂ powder, the free electrons are absent in microsecond domain (Fig. 2): the free electrons are rapidly trapped at defects within a few picosecond and only a trace amount of free electrons can survive for 1 ms. In rutile TiO₂, a broad peak was observed at 17000-7000 cm⁻¹, which was assigned to the optical transition of deeply trapped electrons from the mid-gap state to CB. The depth was estimated to be >0.9 eV from the absorption edge (7000 cm⁻¹, ~ 0.9 eV), which is much deeper than that in anatase TiO_2 (<1000 cm⁻¹, < 0.1 eV). The difference in the electron trap depth and the lifetime of free or shallowly trapped electrons is responsible for the higher activity of anatase TiO₂ for reduction reactions. However, the deep electron trapping in rutile TiO_2 positively acts to prevent recombination;


thereby extending the lifetimes of both holes and deeply trapped electrons. As a result, the number of holes surviving in rutile TiO₂, giving a strong absorption at 25000~17000 cm⁻¹, becomes much larger than in anatase TiO_2 (Figs. 1 &2). The longer lifetime of holes promotes photocatalytic oxidation, especially for multi-hole processes such as water oxidation. These findings strongly suggest that the defects in TiO₂ powder particles induce peculiar behaviors of charge carriers, which determine distinctive photocatalytic the activities of anatase and rutile TiO₂ powders. In addition, we note that these behaviors of photogenerated charge carriers in powder particles are totally different from that in defect-free single crystals [2].

REFERENCES


[1] A. Yamakata et al.: J. Phys. Chem. C, **118** (2014) 23897-23906.

[2] A. Yamakata et al.: J. Phys. Chem. C, 119 (2015) 1880-1885.

[3] A. Yamakata et al.: J. Phys. Chem. C, 119 (2015) 24538-24545.

Figure 1. Transient absorption spectra of anatase TiO_2 powder (TIO-10) irradiated by UV laser pulses (355 nm, 6-ns duration, 0.5 mJ per pulse, and 5 Hz).

Figure 2. Transient absorption spectra of rutile TiO_2 powder (TIO-6) irradiated by UV laser pulses (355 nm, 6-ns duration, 0.5 mJ per pulse, and 5 Hz).