Deoxydehydration of glycerol with H₂ to allyl alcohol catalyzed by heterogeneous ReO_x-Au/CeO₂

Keiichi Tomishige^{*}, Yoshinao Nakagawa, Masazumi Tamura Department of Applied Chemistry, School of Engineering, Tohoku University, Sendai, Japan *E-mail: tomi@erec.che.tohoku.ac.jp

Biomass-derived chemicals are attractive starting materials to substitute for unsustainable fossil resources. Since oxygen content is usually high in these biomassderived materials compared with most valueadded chemicals, deoxydehydration (DODH) is one of important reactions for the decrease of oxygen content, which converts vicinal two OH groups to one C=C double bond. One of typical DODH catalysts is homogeneous Re complex, where non-H₂ reductants such as PPh₃, sulfite, metal, hydroaromatics and alcohols have been used. Recently, our group has developed heterogeneous ReOx-M/CeO2 (M=Pd and Au) catalysts, where H₂ can be used as a reductant [1-3]. This presentation focuses the DODH of glycerol and erythritol with H₂ catalyzed by ReO_x-Au/CeO₂ catalyst.

CeO₂ (Daiichi Kigenso Co., Ltd., HS, BET surface area: 87 m² g⁻¹, after calcination at 873 K for 3 h) was used. The ReO_x/CeO₂ catalysts were prepared by impregnating CeO₂ with the aqueous solution of NH₄ReO₄. The ReO_x-Au/CeO₂ catalysts were prepared by impregnating ReO_x/CeO₂ after drying at 383 K for 12 h with aqueous solution of HAuCl₄. The activity tests were carried out using the autoclave reactor.

The addition of Au to $\text{ReO}_x/\text{CeO}_2$ enhanced the activity of the DODH reaction of glycerol [3]. The ReO_x -Au/CeO₂ catalyst (Re 1 wt%, Au/Re=0.3) has highly dispersed Re species on CeO₂ and 12 nm Au particles [3]. The main role of Au is to activate H₂ molecule and to promote the reduction of Re species probably by hydrogen spillover phenomenon. Figure 1 shows the reaction time dependence of DODH of glycerol with H₂ over ReO_x-Au/CeO₂. The selectivity to allyl alcohol is very high, and the yield of allyl alcohol reached 91% [3], which was clearly higher than those in previous reports using H_2 as a reductant. The selectivity to allyl alcohol decreased significantly after the glycerol conversion reached about 100%, indicating the suppression of the consecutive hydrogenation of allyl alcohol to 1-propanol with the presence of glycerol.

Fig. 1 Reaction time dependence of DODH of glycerol over ReO_x -Au/CeO₂ catalyst (Re 1 wt%, Au/Re=0.3) Conditions: glycerol 0.5 g, 1,4-dioxane 4 g, W_{cat} =0.3 g, $P(\text{H}_2)$ = 8 MPa, T = 413 K.

In addition, the DODH of erythritol was carried out using ReO_x -Au/CeO₂ catalyst, and 81% yield of 1,3-butadiene was obtained [3].

REFERENCES

[1] N. Ota, M. Tamura, Y. Nakagawa, K. Okumura and K. Tomishige, Angew. Chem. Int. Ed., 54 (2015) 1897-1900.

[2] N. Ota, M. Tamura, Y. Nakagawa, K. Okumura and K. Tomishige, ACS Catal., 6 (2016) 3213-3226.

[3] S. Tazawa, N. Ota, M. Tamura, Y. Nakagawa, K. Okumura and K. Tomishige, ACS Catal., 6, (2016) 6393-6397.