Synthesis and characterization of ε-Keggin-type Cobaltomolybdate-based 3D Framework Material

<u>M. Sadakane</u>¹, T. Igarashi¹, Z. Zhang², Nao Iseki¹, N. Hiyoshi³, A. Yamamoto⁴, H.

Yoshida⁴, N. Tsunoji¹, W. Ueda², T. Sano¹ ¹Graduate School of Engineering, Hiroshima University, Japan, ²Faculty of Engineering, Kaganagawa University, Japan, ³Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology, Japan, ⁴Graduate School of Human and Environmental Studies, Kyoto University, Japan

*E-mail: sadakane09@hiroshima-u.ac.jp

ε-isomer of Keggin-type polyoxomolybdates are composed of one central XO_4 tetrahedron and twelve surrounding MoO₆ octahedra with T_d symmetry (Figure 1a).¹ Three oxygen atoms of four hexagonal faces of the ε -Keggin POM are able to bind to many metal ions such as transition metals and lanthanide metals (Figure 1b).

Fig. 1 Ball-and stick representation of (a) and (b) ϵ -Keggin-type molecule and (c) and (d) framework structure.

We have reported the first all-inorganic 3D framework where ε -Keggin polyoxovanadomolybdate, [ε -VM09.4V2.6O40], was linked by Bi^{III} cations to form a 3D framework with a zig-zag 3D pore system (denoted as **Mo–V–Bi oxide**) (Figure 1c)². The **Mo–V–Bi oxide** is thermally stable, and the opened pores are analyzable by the gas adsorption-desorption technique. This compound can also be used as an acid catalyst².

Here, we describe the preparation and structural characterization of a new member of all-inorganic ε -Keggin POM-based 3D frameworks with cobalt ions (Co^{II}), NaH₉[ε -Co^{II}Mo^V₈Mo^{VI}₄O₄₀Co^{II}₂], denoted as **Na–Mo–Co oxide**³.

Investigation of reaction conditions (pH of the solution, reaction temperature, reaction time etc.) indicates that once–produced CoMoO₄-0.75H₂O⁴ without Mo metal was transferred to the desired **Na-Mo-Co oxide** by heating at 170 °C for 24 hours in the presence of Mo metal (Figure 2).

Fig. 2 Relationship between pH and products of hydrothermal reactions of aqueous solutions of Na_2MoO_4 and $CoCl_2$ at 170 °C for 24 hours with and without Mo metal.

We also present purification of this mixed oxide and characterization using powder XRD, IR, Raman, HAADF-STEM (Fig. 3), and XAFS.

Fig. 3 HAADF-STEM image of Na-Mo-Co oxide

REFERENCES

[1] A. Dolbecq, et al. Chem. Commun. 48 (2012) 8299.

- [2] Z. Zhang, et al. Inorg. Chem. 53, (2014) 903.
- [3] T. Igarashi, et al. Inorg. Chem. in press.
- [4] K. Eda, et al. J. Solid State Chem. 179 (2006), 1453.