Direct hydroxylation of benzene to phenol using H₂O₂ as an oxidant over Fe- or Cu-containing zeolite catalysts

<u>Peipei Xiao</u>, Junko N. Kondo, Toshiyuki Yokoi* Tokyo institute of technology, Yokohama, Nagatsuta 4259 Midori-ku, Japan

*E-mail: yokoi@cat.res.titech.ac.jp

The conversion of benzene to oxygencontaining aromatic compounds, such as phenol, is one of the most active topics in applied and fundamental catalytic research. Meanwhile, C-H bond of benzene is very stable like methane so that it is extremely difficult to oxidant under mild conditions. In industry, as a crucial bulk commodity chemical, phenol is in most cases produced by a three-step cumene process. However, this process has drawbacks such as high pollution, high-energy consumption, and relatively low selectivity toward phenol. To address these issues, a direct one-step benzene oxidation approach has been highly desired.^[1]

In this paper, Fe- and Cu-containing AEI (SSZ-39), CHA (SSZ-13) and MFI (ZSM-5) zeolite catalysts were prepared by ion-exchange method. The reaction of direct hydroxylation of benzene to phenol using H_2O_2 as oxidant was carried out with 50 mg catalyst, 5 mmol benzene, 10 mmol H_2O_2 and 10 ml acetonitrile at 60 °C with stirring for 6 h.

Table 1 Chemical composition of the catalysts

Catalyst	Si/Al ^a	Si/M ^b	M(wt.%) ^b
		51/111	111(111.70)
[Al]AEI	8.9		
[Fe, Al]AEI	8.9	89	0.9
[Cu, Al]AEI	8.8	80	1.1
[Al]CHA	5.0		
[Fe, Al]CHA	4.9	45	1.5
[Cu, Al]CHA	5.0	39	2.0
[Al]MFI	25		
[Fe, Al]MFI	25	51	1.7
[Cu, Al]MFI	24	73	1.3

^a measured by ICP-AES; ^b M represents Fe or Cu

The chemical composition of catalysts was shown in Table 1. Fig. 1 shows the benzene conversion and the phenol yield. [A1]AEI, [A1]CHA and [A1]MFI showed very low benzene conversion, while after loading Fe and Cu on zeolites, the performance was greatly improved. Cu-containing zeolite catalysts show higher benzene conversion than Fe-containing catalysts, while Fe-containing catalysts achieved higher phenol selectivity than Cu-containing catalysts.

The H_2O_2 conversion and efficiency of the reaction are shown in Fig. 2. [Al]AEI, [Al]CHA and [Al]MFI present very low H_2O_2 conversion due to the low activity. When Cucontaining zeolites used as catalysts, numerous by-products that produce to tar, resulting in non-efficient consumption of H_2O_2 .

Fig.1 The benzene conversion and phenol yield of Feand Cu-containing zeolite catalysts in the reaction of direct hydroxylation of benzene to phenol using H_2O_2 as an oxidant.

Fig. 2 H_2O_2 conversion and efficiency of Fe- and Cucontaining zeolite catalysts in the reaction of direct hydroxylation of benzene to phenol using H_2O_2 as an oxidant.

Different topology zeolites present the same result that Cu-containing zeolites get relatively high benzene conversion, Fe-containing zeolites achieved relatively higher selectivity. The interesting phenomenon would provide a new clue to improve the performance of direct hydroxylation of benzene to phenol.

REFERENCES

[1] J.H. Yang, G. Sun, D. Ma, ect., Energy Environ. Sci., 6(2013), 793–798