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The development of active and durable non-

precious metal-based oxygen reduction 

reaction (ORR) catalysts has been of prime 

importance for renewable-energy technologies 

including fuel cells and metal-air batteries. 

Iron and nitrogen co-doped carbons (Fe–N/C) 

have been considered as the most promising 

candidates among non-precious metal ORR 

catalysts, owing to their outstanding ORR 

activity, but the catalytic role of active species 

in Fe–N/C catalysts is still a subject of debates. 

Although there has been a consensus that Fe–

Nx sites play a significant role in the ORR, 

recently iron and/or iron carbide encased 

within carbon shells (Fe–Fe3C@C) has also 

been suggested as an active species for the 

ORR. However, a broad spectrum of possible 

roles has been proposed for the Fe–Fe3C@C 

species. Some groups reported that high ORR 

activity could be achieved with catalysts 

containing only Fe–Fe3C@C sites [1]. Others 

suggested that the Fe–Fe3C@C sites play a 

synergistic role in conjunction with the Fe–Nx 

sites [2]. Another viewpoint is that Fe–

Fe3C@C sites are merely an impurity phase 

[3]. Such a discrepancy is stem from similarity 

of synthetic route between Fe–Nx and Fe–

Fe3C@C sites, hampering the identification of 

exclusive role of each species. 

In this presentation, in order to establish the 

respective roles of Fe–Nx and Fe–Fe3C@C 

sites we rationally designed model catalysts 

via the phase conversion reactions of Fe3O4 

nanoparticles supported on carbon nanotubes. 

The resulting three catalysts selectively 

contained Fe–Nx, Fe–Fe3C@C, and N-doped 

carbon (C–Nx) sites. The catalysts containing 

Fe–Nx sites exhibited superior ORR activity 

with low HO2
−
 yield (Fig. 1a), compared to 

other two catalysts. When Fe–Nx sites were 

etched by an acid or poisoned by CN
–
, the 

catalytic activity decreased drastically (Fig. 

1a), confirming that Fe–Nx sites play a major 

role for high ORR activity via 4-electron (4 e
−
) 

pathway (Fig. 1b). On the other hand, the 

catalysts only with Fe–Fe3C@C sites showed 

inferior ORR performance and high HO2
−
 

yield (Fig. 1a). Through additional peroxide 

reduction experiment, encapsulated form of 

Fe–Fe3C@C sites could facilitate sequential 

peroxide reduction, concluding that Fe–

Fe3C@C sites play an auxiliary role for the 

ORR via 2 e
−
 × 2 e

−
 pathway (Fig. 1b). 
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Fig.1 (a) ORR polarization curves of model 

catalysts. (b) Illustration of the role of Fe–Nx 

and Fe–Fe3C@C sites for the ORR. 
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