Removal of Ammonia and Hydrogen Sulfide in a Simulated Coke Oven Gas with Limonite

Yuuki Mochizuki, Ayumu Ogawa, and Naoto Tsubouchi* Center for Advanced Research of Energy and Materials, Hokkaido University, Sapporo, Japan

*E-mail: tsubon@eng.hokudai.ac.jp

To develop a novel hot gas cleanup method to efficiently remove NH3 or H2S in coke oven gas (COG) produced in coke making process is important to save the energy consumption in ironmaking process. Our research group has recently found that α -Fe produced by reduction of an Australian limonite ore containing a large amount of goethite (α -FeOOH), achieves the almost complete decomposition of NH₃ or pyridine (as a model tar-N compound) in simulated fuel gas from air blown coal gasification and exhibits very stable performance [1,2]. In this work, therefore, we investigated the effect of the presence of COG components on NH3 catalytic decomposition and H₂S removal performance using an Australian limonite to develop a novel gas cleaning method.

An Australian limonite (Fe, 44; Si, 9.4; Al, 7.2; Mg, 0.15; Ca, 0.07 mass%-dry) with about 70 mass% of α -FeOOH was used. The BET surface area and particle size are 40 m²/g and 250-500 µm, respectively.

NH₃ catalytic decomposition and H₂S removal runs were carried out with a cylindrical quartz reactor. The limonite was first reduced with pure H₂ at 500°C for 2 h, then the sample was held at a temperature of 300-850 °C under flowing pure He, and finally feed gas (mixture of 1% NH₃ or 3000 ppm H₂S/He and 50% H₂, 30% CH₄, 5% CO, 5% CO₂ and 5% H₂O) was introduced into the reactor, space velocity being 51000 h⁻¹. The amount of N₂ or H₂S in the reactor effluent was measured with a micro-GC or Gastec detector tube, respectively. Conversion of NH₃ to N₂ and removal extent of H₂S was calculated based on N₂ and H₂S amounts detected at the reactor outlet.

Table 1 shows the results of NH₃ catalytic decomposition under various feed gases at 850 °C until 120 min. The almost complete decomposition of NH₃ was maintained beyond 240 min in He, whereas the performance dramatically decreased after 90 min in 50% H₂/30% CH₄/He. A similar tendency was observed in 5% CO coexisted to 50% H₂/30% CH₄/He. A significant amount of C deposition was observed on the catalyst surface after experimental runs in the presence of 50% CH₄ and 50% CH₄/5% CO. Therefore, catalytic deactivation may occur by C deposition derived from CH₄ decomposition. When 5% CO₂, 5% H₂O or 5% CO₂/5% H₂O was coexisted to 50% H₂/30% CH₄/5% CO/He, the NH₃ catalytic

decomposition performance was improved, and > 99 % conversion of NH₃ to N₂ was observed beyond 240 min. Moreover, no significant C deposition was found on the catalyst surface after experimental runs. These results show that C deposition on active sites of catalyst surface is inhibited by 5% CO₂, 5% H₂O or 5% CO₂/5% H₂O addition to 50% H₂/30% CH₄/5% CO.

 Table 2 presents the effect of coexisting gas on
the removal extent of H₂S at 400 °C until 20 min, as an example. The H₂S removal of 100 % was observed up to 20 min in 50% H₂/He or 50% H₂/30% CH₄/He, whereas the performance decreased from 5 min in 50% H₂/30% CH₄/5% CO/He. Similar decreasing was observed at 5% CO/5% CO2 added to 50% H2/30% CH4/He and other temperatures (300-600 °C). On the other hand, the removal performance of H₂S was improved at 5% H2O coexisted to 50% H2/30% CH₄/5% CO/He or 50% H₂/30% CH₄/5% CO/5% CO₂/He (simulated COG). At temperatureprogrammed-oxidation in 10% O₂/He of samples recovered after experimental runs, formation amounts of CO and CO₂ from solid products recovered after 50% H₂/30% CH₄/5% CO/He and 50% H₂/30% CH₄/5% CO/5% CO₂/He run were greater than those of 50% H₂/ 30% CH₄/He and 5% H₂O addition. These results show that H₂S removal ability decreases by C deposition derived from CO via disproportionation reaction, and these performance is improved by H₂O addition.

Table 1 Effect of coexisting gas on NH_3 conversion to N_2 at 850 °C until 120 min

Atmosphere	NH ₃ conversion, %
50%H ₂ /30%CH ₄ /He	0
5%CO addition	0
5%CO/5%CO ₂ addition	>99
5%CO/5%H ₂ O addition	>99
5%CO/5%CO ₂ /5%H ₂ O addition	>99

Table 2 Effect of coexisting gas on the removal extent ofH₂S at 400 °C until 20 min

Atmosphere	H ₂ S removal, %
50%H ₂ /30%CH ₄ /He	100
5%CO addition	40
5%CO/5%CO ₂ addition	45
5%CO/5%H ₂ O addition	95
5%CO/5%CO ₂ /5%H ₂ O addition	95

REFERENCES

[1] N. Tsubouchi, H. Hashimoto, Y. Ohtsuka, Energy Fuels, 21 (2007) 3063.

[2] A. Ogawa, Y. Mochizuki, N. Tsubouchi, ISIJ Int., 56 (2016) 1132.

ACKNOWLEDGEMENTS

The present work was supported by the Iron and Steel Institute of Japan (ISIJ) Research Promotion Grant and the Steel Foundation for Environmental Protection Technology (SEPT). The authors acknowledge the supply of limonite from Kobe Steel Ltd in Japan.