Effect of CeZrO₂-modification of (Pd-Rh)/Al₂O₃ catalyst upon CH₄ bireforming performance

<u>Kiseok Kim</u>¹, Partho Sarothi Roy², Jinwoo Song^{3,4}, Ji Man Kim³ ¹School of Chemical Engineering, Yeungnam University, South Korea ²CE-CERT, University of California Riverside, USA ³Department of Chemistry, Sungkyunkwan University, South Korea ⁴R&D Center, Heesung Catalysts Corp., South Korea

*E-mail: kimks@yu.ac.kr

Reforming of biogas by steam to syn gas is of significance for viable conversion of renewable energy resources because biogas consists primarily of the most simple and inexpensive hydrocarbon (CH₄) and the most stable carbon oxide (CO₂), both of which are major greenhouse gases. To optimize the reaction condition and catalyst for steamreforming of biogas will be more systematic if they are to be investigated in the context of CH₄ bi-reforming, i. e., reforming of CH₄ in the presence of two reagents, carbon dioxide and steam. Some of our previous works on CH₄ bi-reforming have been performed to develop the process operating condition over the nano-scale, active and stable PdRh catalyst supported on Al₂O₃ that is coated on a metal foam substrate designed to fit the SOFC fuel processor application [1, 2].

In the present study, CeZrO₂-modification of Al₂O₃ support was optimized with respect to catalyst activity and stability as well as syn gas product vield and selectivity for CH₄ bireforming based on the reference operating condition obtained from Aspen Plus process simulation and previous experiments. CeZrO₂/Al₂O₃ weight ratio of the Pd-Rh catalyst support was varied as 0/100, 15/85, 25/75, 35/65, 50/50 and 75/25, and the catalyst performances were evaluated and compared in terms of CH₄ and CO₂ conversions, H₂/CO ratio of product syn gas, transient or accumulated coke deposition, and process thermal efficiency. CH₄ bi-reforming reaction runs were performed in a heat exchanger

platform type reactor in the modes of transient activity screening and 200 hrs on-stream stability test. The fresh and used catalysts were characterized by BET surface area and porosity measurements, noble metal dispersion, and SEM as well as TEM analysis. Optimum relative abundance of CeZrO₂ within the alumina support was addressed for enhancing CH₄ bi-reforming performance of the Pd-Rh/Al₂O₃ catalyst.

Table 1. Characterization of the Pd-Rh catalysts.

Catalysts	CeZrO ₂ /Al ₂ O ₃ ratio	surface area (m ² /g)	PGM dispersion (%)
mfc-1	0/100	126.3	52.2
mfc-2	15/85	94.9	40.7
mfc-3	25/75	88.3	33.1
mfc-4	50/50	84.1	30.2
mfc-5	75/25	79.5	26.2
mfc-6	100/0	69.8	21.0

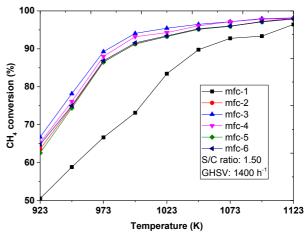


Fig. 1 CH₄ conversion from CH₄ bi-reforming

REFERENCES

[1] P. S. Roy, M. S. Kang and K. Kim, Effects of Pd-Rh composition and CeZrO2-modification of Al2O3 on performance of metal-foam-coated Pd-Rh/Al2O3 catalyst for steam reforming of model biogas, *Catal. Lett.* 144, 2021(**2014**).

[2] P. S. Roy, A. S. K. Raju and K. Kim, Influence of S/C ratio and temperature on steam reforming of model biogas over a metal-foam-coated Pd-Rh/(CeZrO2-Al2O3)catalyst, *Fuel* 139, 314(**2015**).