Catalytic Steam Reforming of Macro Algae Derived Oil over Supported Ni Catalysts

Yong Beom Park¹, Hankwon Lim² and <u>Hee-Chul Woo^{1,*}</u> ¹Pukyong National University, Busan, Korea ²Catholic University of Daegu, Gyeongbuk, Korea

*E-mail: woohc@pknu.ac.kr

Biomass has received much attention as renewable feedstock for the production of hydrogen, liquid fuels and chemicals[1]. Hydrogen is produced by catalytic steam reforming of bio-oil converted from biomass by fast pyrolysis or hydrothermal liquefaction. The objective of this work is to study activities for steam reforming of macro algae derived oil over Ni-K₂Ti_xO_y based catalysts.

Liquefied oil was first produced by hydrothermal liquefaction in an auto-clave reactor. Macro algae with distilled water (1:9 weight ratio) were used for hydrothermal liquefaction at 503K in 2 hr and the main components of macro algae and liquefied oil are listed in Table 1. Further analysis showed a liquefied oil composition of $C_{0.58}H_{1.40}O_{0.12} + 4.86 H_2O$.

In this study, Ni/K₂Ti_xO_y based catalysts were prepared by wet impregnation method[2] and catalytic activity studies for new catalysts such as Ni/K₂Ti_xO_y/Al₂O₃, Ni/K₂Ti_xO_y/SiO₂, Ni/K₂Ti_xO_y/ZrO₂-CeO₂, Ni/K₂Ti_xO_y/MgO, and a commercial catalyst (FCR-4-02, Sud-Chemie) were performed. Steam reforming reaction was carried out at 873-1073K under atmospheric pressure in a fixed-bed reactor made of Inconel material. LHSV was maintained at 1 h⁻¹ and product gases (H₂, CO, CH₄ and CO₂) were analyzed using GC-TCD.

According to Fig. 1, using 10% Ni/K₂Ti_xO_y based catalysts, hydrogen yield was in the range of 52-63%, which was higher than the commercial catalyst, FCR-4-02 showing 37% hydrogen yield. Furthermore, more carbon gases (CO, CH₄ and CO₂) were produced in Ni/K₂Ti_xO_y based catalysts (54-66%) than FCR-4-02 (43 %). Moreover, a Ni/K₂Ti_xO_y-Al₂O₃ catalyst showed CO yield of 47% with CO₂ yield of 3% while CO₂ yield of 34% with

CO yield of 14% were observed in a $Ni/K_2Ti_xO_y/ZrO_2$ -CeO₂ catalyst indicating high activity in WGS (water gas shift) reaction in a ZrO_2 -CeO₂ support.

Table 1. Chemical components of macro algae and liquefied oil

	1	-		
Material	Elemental analysis (wt %)			Water
	С	Н	0	content (wt %)
Macro Algae	20.18	3.18	75.01	10.42
Liquefied Oil	6.94	11.12	79.68	87.45

Fig. 1 Comparison of product yield over various catalysts. Reaction conditions: S/C ratio=8.38, Temperature=1073K, Time=5 hr, LHSV=1 h⁻¹

ACKNOWLEDGMENTS

This work was financially supported by the Ministry of Oceans and Fisheries of Korea (Project No. 20140559).

REFERENCES

[1] R. Xing, A.V. Subrahmanyam, H. Olcay, W. Qi, G.P. van Walsum, H. Pendse, G.W. Huber, Green Chem., 12 (2010) 1933.

[2] S.Y. Lee, H. Lim and H.C. Woo, Int. J. Hydrogen Energy, 39 (2014) 17645.