Designed Pd nanoparticles for direct synthesis of hydrogen peroxide

Kwan-Young Lee^{*} *Korea University, Seoul, Republic of Korea

*E-mail: kylee@korea.ac.kr

Hydrogen peroxide (H_2O_2) has been used in various chemical industries such as bleaching agent of pulp, paper and raw material for producing chemicals *etc.* H_2O_2 can be synthesized by direct synthesis process from H_2 and O_2 , and the palladium (Pd) is widely used active metal. In reaction mechanism of direct H_2O_2 synthesis, decomposition of O_2 and H_2O_2 should be inhibited to increase H_2O_2 selectivity.

Density functional theory (DFT) study has allowed deeper understanding of palladium's excellent activity in correlation with the physical structure and electronic state and serve as a guide for optimized design of the catalyst. Therefore, optimal catalysts of direct H_2O_2 synthesis could be synthesized as a combined result of DFT predictions and experiments.

According to the DFT results, {100} facetenclosed cubic Pd has lower O2 decomposition energy barrier than {111} facet-enclosed octahedral Pd [1]. Cube- and octahedronshaped Pd catalysts were synthesized and applied in direct synthesis of H₂O₂, and Pd octahedral catalyst yielded higher H₂O₂ productivity than Pd cubic catalyst [2]. In size-controlled addition, Pd octahedral catalysts were synthesized to reduce the energetic O₂ dissociative corner & edge sites and to increase less energetic terrace sites. The largest 18-nm-sized catalysts among the tested Pd octahedral nanoparticles of varying sizes showed the highest productivity owing to the highest proportion of the terrace sites [3]. In addition, bimetallic catalysts are being investigated to further increase the activity. Galvanic-replaced Pt-doped Pd octahedral catalysts were examined on H₂O₂ direct synthesis to determine synergistic effect. Also, cubic Pd core-Au shell catalysts were synthesized to study strain effects.

However, the shape- and size-controlled Pd nanoparticles (NPs) were physically detached

(55-77%) from support after reaction [2]. Core- and yolk-shell structures were examined as an alternative to prevent the loss of Pd particles. Both structures significantly reduced the loss of NPs (below 5%) during the reaction. Especially, the catalytic activity of yolk-shell structured Pd catalyst was superior because of higher exposed Pd surface area [4]. The micropore channels of the shell, however, limited diffusion of reactant gas molecules and compromised productivity. Therefore, grafted Pd nanoparticles on mesoporous SiO₂ shell $(SiO_2(a)Pd(a)m-SiO_2)$ were synthesized to enhance mass diffusion through the pores. Consequently, SiO₂@Pd@m-SiO₂ showed the highest productivity (1090 mmol/g_{Pd}h) among applied catalysts for direct H₂O₂ synthesis [5].

REFERENCES

- [1] P. Tian, L. Ouyang, X. Xu, J. Xu and Y.F. Han, Chin. J. Catal., 34 (2013) 1002.
- [2] S. Kim, D.-W. Lee and K.-Y. Lee, J. Mol. Catal. A: Chem., 391 (2014) 48.
- [3] H E Jeong, S. Kim, M.-g. Seo, D.-W. Lee and K.-Y. Lee, J. Mol. Catal. A: Chem., 420 (2016) 88.
- [4] M.-g. Seo, S. Kim, H E. Jeong, D.-W. Lee and K.-Y. Lee, J. Mol. Catal. A: Chem., 413 (2016) 1.
- [5] M.-g. Seo, D.-W. Lee, S S Han and K.-Y. Lee, ACS Catal., (2017) Submitted.