Low-Temperature Catalytic Oxidative Coupling of Methane over Supported Heteropolytungstate Catalysts in an Electric Field

<u>Ayaka Sato¹</u>, Shuhei Ogo^{1,2,*}, Kousei Iwasaki¹, Kei Sugiura¹, Yasushi Sekine¹ ¹Waseda University, Tokyo, Japan ²JST, PRESTO, Saitama, Japan *E-mail: ogo@aoni.waseda.jp

Direct conversion of methane to ethane and ethylene by oxidative coupling of methane (OCM) is anticipated as a highly efficient reaction. Although OCM has been investigated actively, activation of methane requires high temperatures over 973 K and non-selective oxidation proceeds at such high temperatures. To solve these problems, we adopted a nonconventional system, a catalytic reaction in an electric field, in anticipation of activation of methane at low temperatures [1]. We have reported that OCM proceeded at low temperatures (423 K) in an electric field over Ce-W-O system catalysts, including Keggintype heteropolytungstate [1,2]. Here we report the mechanism of C₂ hydrocarbon formation during OCM in the electric field over supported heteropolytungstate catalysts.

Tetrabutylammonium (TBA) salt of heteropolytungstate, TBA₃[PW₁₂O₄₀] (*denoted as TBA-PW*₁₂O₄₀), supported on CeO₂ (JRC-CEO-1) catalysts were prepared by an impregnation method [1]. Loading amount of TBA-PW₁₂O₄₀ was 40wt%.

The catalytic activity tests were conducted with a fixed-bed flow-type quarts tube reactor. A 100 mg of catalyst was charged in the reactor. Reactant feed gases were methane (or oxygen and Ar (CH₄:O₂:Ar ethane), 25:15:60, total flow rate: 100-180 SCCM). For the reaction in the electric field, two stainless steel electrodes were inserted contiguously to the catalyst-bed in the reactor. The electric field was imposed using a constant current with a DC power supply. The temperature of reactor was 423 K to avoid the condensation of water produced by the reactions. Products were analyzed using a GC-FID with a methanizer and a GC-TCD.

Figure 1 shows a relation between CH₄ conversion and selectivity over the TBA-

 $PW_{12}O_{40}/CeO_2$ catalyst in the electric field. As CH₄ conversion approaches 0 %, C₂H₆ selectivity increases, and each selectivity of C₂H₄ and C₂H₂ decreases. In the range of very low CH₄ conversions, C₂H₆ production was the main reaction in the OCM with the electric field. C₂H₄ selectivity increased concomitantly with increased CH₄ conversion and C₂H₆ selectivity decreased. These results revealed that the C₂H₆ production was a main reaction in OCM with the electric field, and C₂H₄ was formed through a successive oxidative dehydrogenation of the formed C₂H₆.

To evaluate the reaction mechanism of C₂ hydrocarbon formation during OCM in the electric field, catalytic conversion of ethane TBA-PW₁₂O₄₀/CeO₂ over catalyst was conducted in the electric field at 423 K. As shown in Table 1, TBA-PW₁₂O₄₀/CeO₂ catalyst showed high C2H4 selectivity and maintained its structure even at high C2H6 conversion. These results indicated that the oxidative dehydrogenation of C₂H₆ to C₂H₄ proceeds. however, easily a successive dehydrogenation of C_2H_4 to C_2H_2 is unfavorable reaction over the catalyst in the electric field.

Fig. 1 Relation between CH_4 conversion and C_2H_6 , C_2H_4 , C_2H_2 selectivity over TBA-PW₁₂O₄₀/CeO₂ catalyst in the electric field (423 K, 3 mA).

Table 1 Oxidative dehydrogenation of ethane over TBA-PW $_{12}O_{40}$ /CeO₂ catalyst in the electric field

Current	Voltage	Conv	./%	Selectivity / C-%				
/ mA	/ V	C_2H_6	O_2	C_2H_4	C_2H_2	CH_4	CO	$\rm CO_2$
3.0	700	2.2	9.4	63.9	0.0	3.7	21.0	11.4
5.0	600	3.7	9.4	74.3	0.0	6.0	13.0	6.7
7.0	400	8.5	13.4	73.3	0.9	7.2	12.2	6.4
This work was supported by IST DRESTO								

This work was supported by JST, PRESTO. **REFERENCES**

S. Ogo, Y. Sekine, *Chem. Record, in press.* K. Sugiura, S. Ogo, K. Iwasaki, T. Yabe, Y. Sekine, *Scientific Reports*, 6 (2016) 25154.