Facet-dependent Deposition of Metal Particles and their Stability on Decahedral-shaped Titania Particles

Kenta Kobayashi¹, Mai Takashima^{1,2},

Mai Takase³, and Bunsho Ohtani^{1,2} ¹Graduate School of Environmental Science and ²Institute for Catalysis, Hokkaido University, Sapporo, Japan ³Graduate School of Engineering, Muroran Institute of Technology, Muroran, Japan

*E-mail: kobayashi.k@cat.hokudai.ac.jp

It has been proposed that faceted titanium(IV) oxide (titania) particles, e.g., decahedral-shaped anatase titania particles (DAPs) exposing two $\{001\}$ and eight $\{101\}$ facets, show high-level photocatalytic activity, presumably because photoexcited electrons and positive holes migrate to {101} and {001} facets, respectively, to result in charge separation.^{1,2} This speculation seemed to be based on the observations by scanning electron microscopy and/or transmission electron microscopy in which most metal and metaloxide particles deposited on DAPs, through photocatalytic reduction and oxidation of their precursors, were seen on {101} and {001} facets, respectively.^{1,2} However, these studies may include some problems, e.g., (1) there were no statements on the number of metal/metal-oxide particles deposited on the two kind of facets, only showing a single or few microscopic images, and (2) deposited metal (or oxide) particles could be desorbed and re-adsorbed on the $\{101\}$ or $\{001\}$ facets. In this study, metal particles were deposited on DAPs using two methods and observed by scanning electron spectroscopy (SEM). Facetdependent deposition was quantitatively and precisely measured.

DAPs were prepared by a gas-phase reaction of titanium(IV) chloride (TiCl₄) with oxygen.³ Platinum or gold particles were deposited on the DAPs by (1) photocatalytic reduction of hexachloroplatinic acid (H₂PtCl₆) or tetrachloroauric acid (HAuCl₄), respectively or (2) mixing a gold or platinum colloid solution with DAPs suspensions in the dark or under mercury-lamp irradiation.

Figure 1 shows an SEM image of the

platinum colloid-deposited DAPs under mercury-lamp irradiation. By counting the number of the metal particles (on more than 100 DAPs), a ratio of deposition density (s) was calculated as a measure of facet-selective metal deposition using a equation: $s = D_{\{001\}}$ $D_{\{101\}}$, where $D_{\{001\}}$ and $D_{\{101\}}$ are the density of deposited metal particles on each facets. In the case of the photocatalytic metal deposition from H_2PtCl_6 or $HAuCl_4$, s was smaller than 1, i.e., metal particles tended to be deposited preferentially on the {101} facet, as was reported previously. On the other hand, in the case of mixing of a gold or platinum colloid both under irradiation and in the dark, s was also smaller than 1, i.e., even without photocatalytic reaction, mixing of a metal colloid in the dark exhibited {101}-facet selectivity. These results suggest the difference ability metal-particle in of adsorption or desorption between {101} and {001} facets.

Influence of stirring under dark condition after photodeposition was examined to check the stability of photodeposited metal particles. As a result, {001} facet-selective desorption was observed, and therefore in the photodeposition, case of it can be hypothesized that facet-selective metal deposition was caused by desorption of metal particles once deposited on {001} facets and adsorption on {101} facets.

Fig. 1 An SEM image of DAPs with platinum particles (white) deposited from a colloid under irradiation

REFERENCES

- C. Liu, X. Han, S. Xie, Q. Kuang, X. Wang, M. Jin, Z. Xie and L. Zheng, *Chem. Asian. J.*, 8, 282 (2013).
- [2] T. Ohno, K. Sarukawa and M. Matsumura, *New J. Chem.*, **26**, 1167 (2002).
- [3] M. Janczarek, E. Kowalska and B. Ohtani. *Chem. Eng. J.*, **289**, 502 (2016).