# Insights into the role of Ba species on TiO<sub>2</sub> for photocatalytic NO<sub>x</sub> storage process

Kazuki TAMAI<sup>1</sup>, Saburo HOSOKAWA<sup>1,2</sup>, Hiroyuki ASAKURA<sup>1,2</sup>, Kentaro TERAMURA<sup>1,2</sup>, Tsunehiro TANAKA<sup>1,2</sup>

<sup>1</sup>Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan <sup>2</sup> Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan

\* Tsunehiro TANAKA: tanakat@moleng.kyoto-u.ac.jp

### 1. Introduction

Automobile emission regulations become restrictive globally; therefore, further improvements in automobile catalyst performance are desired. We have reported that Ba-modified TiO<sub>2</sub> photocatalyst exhibits excellent NO<sub>x</sub> storage capacity, as lean NO<sub>x</sub> trap at a low temperature [1]. In this study, the role of modified Ba on TiO<sub>2</sub> for photocatalytic NO<sub>x</sub> storage process was investigated.

#### 2. Experimental

Ba-modified TiO<sub>2</sub> catalysts (Ba/TiO<sub>2</sub>) with different loading amounts (100-1000 µmol  $g^{-1}$ ) were synthesized by а typical impregnation method using Ba(NO<sub>3</sub>)<sub>2</sub> as a precursor. Photocatalytic  $NO_x$  storage reaction was performed in a fixed bed flow system under UV light irradiation in the reaction gas (NO 200ppm, O2 3%, He balance, GHSV 50,000  $h^{-1}$ ). Ba/TiO<sub>2</sub> catalysts were characterized with XRD, TPD, XAFS, and DRIFT.

## 3. Results and discussion

Figure 1 shows the temperature programmed desorption profiles (TPD) of  $NO_x$ from Ba/TiO<sub>2</sub> with different Ba(NO<sub>3</sub>)<sub>2</sub> loading amounts. The sample with a loading amount of 100  $\mu$ mol g<sup>-1</sup> had one desorption peak around 660 K, while other samples had two peaks around 660 K and 830 K, hereafter referred to as LT and HT peaks, respectively. Since  $NO_x$ desorption from the bulk Ba(NO<sub>3</sub>)<sub>2</sub> was detected around 840 K, the HT peak was attributed to crystalline Ba(NO<sub>3</sub>)<sub>2</sub>. Ba K-edge XANES for the catalyst with a small loading

amount of 100 µmol g<sup>-1</sup> was different from that of bulk Ba(NO<sub>3</sub>)<sub>2</sub>, BaO or BaTiO<sub>3</sub>, and the catalyst did not show XRD patterns due to Ba species. Therefore, the LT peak must be due to the highly-dispersed Ba species on TiO<sub>2</sub>. The linear combination of XANES spectra with the highly-dispersed Ba species and Ba(NO<sub>3</sub>)<sub>2</sub> well-simulated the spectra of all Ba/TiO<sub>2</sub> samples. The estimated amounts of the dispersed Ba species corresponded well to the photocatalytic  $NO_x$  storage activities (Figure 2). In-situ DRIFT revealed that  $NO_x$  was trapped on not Ba sites but Ti sites on Ba/TiO<sub>2</sub>. Considering these results, we conclude that the dispersed Ba species enhances the  $NO_x$ adsorption ability of the neighboring Ti sites.



Fig. 1 TPD profiles of Ba/TiO<sub>2</sub> catalysts with various Ba loadings of (a) 100, (b) 250, (c) 500, (c) 750, and (e) 1000  $\mu$ mol g<sup>-1</sup>. (f) Physical mixture of Ba(NO<sub>3</sub>)<sub>2</sub> and TiO<sub>2</sub>.



Fig. 2 Relationship between photocatalytic  $NO_x$  storage capacities and amounts of highly-dispersed Ba species in Ba/TiO<sub>2</sub>.

#### REFERENCES

[1] A. Yamamoto, Y. Mizuno, K. Teramura, S. Hosokawa, and T. Tanaka, Appl. Catal. B, 180 (2016) 283.