Effect of Al₂O₃ Crystalline Phase on Methane Combustion over Pd/Al₂O₃

Kazumasa Murata¹, Yuji Mahara¹, Junya Ohyama^{1, 2}, Atsushi Satsuma^{1, 2} ¹Gradurate School of Engineering, Nagoya University, Nagoya, Japan ²Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Kyoto, Japan *E-mail: satsuma@apchem.nagaya-u.ac.jp

It is well known that a Pd/Al_2O_3 is one of the most active catalysts for methane combustion. In this work, we investigated the effect of crystalline phase of alumina on methane combustion over Pd/Al_2O_3 catalyst.

Various alumina supports used in this study were γ -Al₂O₃ (JRC-ALO-2, JRC-ALO-4, JRC-ALO5, JRC-ALO-8, JRC-ALO-9, boehmite calcinated at 500 °C), θ-Al₂O₃ (AKP-G07, JRC-ALO-10, boehmite calcinated at 1000°C), and α -Al₂O₃ (AKP-50 and AES-12, boehmite calcinated at 1150°C). JRC-ALO-x were supplied from Catalysis Society of Japan. AKP-G07, AKP-50 and AES-12 were supplied from Sumitomo Chemical Co. Ltd. Supported catalysts palladium were prepared by impregnation method using aqueous solution palladium nitrate (Pd loading: 0.5-2wt%). The samples calcined at 500°C for 3 h. Some of the samples were further treated at 800, 850 or 900 °C under air for 10 h to vary Pd particle size. The methane combustion light-off test was performed in 0.4% CH₄, 10% O₂ and N₂ balance as the temperature was ramped at 5 °C min⁻¹ from 200 to 600°C. TOF (at 300°C) was estimated as reaction rate of CH₄ per surface Pd atom measured by CO adsorption.

The light-off test showed that catalytic activity of Pd/ θ -Al₂O₃ was the highest among the catalysts with various crystalline phases. Figure 1 shows dependence of TOF on Pd particle size. TOF of Pd/ θ -Al₂O₃ and Pd/ α -Al₂O₃ were higher than that of Pd/ γ -Al₂O₃ regardless of Pd particle size. TOF of Pd/ γ -Al₂O₃ slightly increased as Pd particle size increased. In contrast, TOF of Pd/ θ -Al₂O₃ and Pd/ α -Al₂O₃ increased as Pd particle size increased to approximately 7 nm, however they decreased with increasing Pd particle size above 7 nm.

We analyzed the structure of Pd particles using CO adsorption IR spectroscopy and TEM. Figure 2 shows IR spectra of adsorbed CO on Pd/γ -Al₂O₃ and Pd/θ -Al₂O₃. The bands of C-O stretching vibrations of linear a-top (2100-2000 cm⁻¹) and bridging CO (1990-1970 and 1950-1850 cm⁻¹) on Pd⁰ were observed. The intensity of the band at 1990-1970 cm⁻¹ was stronger than that of the band at 2100-2000 cm⁻¹ in Pd/ θ -Al₂O₃. The intensity of both bands was nearly same in Pd/γ -Al₂O₃. The intensity ratio of the bridge / (linear + bridge) of Pd/ γ -Al₂O₃ and Pd/θ -Al₂O₃ were 0.55 and 0.91, respectively. For the formation of a bridging CO, ensembles of Pd atoms are necessary. This result indicates that Pd particles on Pd/0-Al₂O₃ have welldefined facets and edges. On the other hand, Pd/γ -Al₂O₃ has Pd particles with rough surface. These results were supported by TEM images of Pd particles on each sample (Fig. 2). We concluded that abundant Pd ensembles on Pd/ θ -Al₂O₃ caused high methane combustion activity.

Fig. 1 Dependence of TOF (at 300°C) on Pd particle size. (\circ : Pd/ γ -Al₂O₃, \blacksquare : Pd/ θ -Al₂O₃, \blacktriangle : Pd/ α -Al₂O₃)

Fig. 2 IR spectra of adsorbed CO on Pd/ γ -Al₂O₃ and Pd/ θ -Al₂O₃ with their TEM images and estimated Pd particle structure models.