
Surface-modified metal sulfides as stable H₂ evolving photocatalyst in Zscheme water splitting system with [Fe(CN)₆]^{3-/4-} redox mediator under visible light irradiation

<u>Masanobu Higashi</u>, Takashi Shirakawa, Osamu Tomita, Ryu Abe^{*} *Graduate school of Engineering, Kyoto University, Kyoto, Japan*

*E-mail: ryu-abe@scl.kyoto-u.ac.jp

Most of metal sulfide semiconductors, such as CdS, possess appropriate band levels for water reduction and oxidation as well as a narrow band gap allowing visible light absorption because the valence bands of them are mainly formed by S 3p orbital. However, the most of sulfides have no capability of O₂ evolution from water due to the occurrence of self-oxidative deactivation by photogenerated holes. Even for the sacrificial H₂ evolution, they require particular electron donor such as S^{2-} and SO_3^{2-} to generate H₂ stably. In the present study, we introduce a new and versatile way that can stabilize metal sulfides, not only CdS but also others such as ZnIn₂S₄ and CdIn₂S₄, as H₂-evolving photocatalyst in Z-scheme water splitting with [Fe(CN)6]^{3-/4-} redox.

Pt/CdS was found to generate considerable amount of H₂ from water in the presence of $[Fe(CN)_6]^{4-}$ under visible light, while the H₂ evolution was soon terminated at ca. 28 µmol in the unbuffered aqueous solution (Fig. 1). However, the production of nearly the twice amount (ca. 53.6 µmol) of oxidant, i.e., [Fe(CN)₆]³⁻, was confirmed in the solution after the reaction. This result indicated that photocatalytic H₂ evolution over Pt/CdS proceeded under visible light, accompanied by the oxidation of $[Fe(CN)_6]^{4-}$ to $[Fe(CN)_6]^{3-}$. The cease of H₂ evolution was due to increased pH value (6.7 \rightarrow 10.7). Then, it was found that the use of borate buffer (BB) was effective to suppress such decrease in H₂ evolution rate. Photocatalytic H₂ evolutions over other metal sulfides (ZnIn₂S₄ and CdIn₂S₄) were also examined in the presence of [Fe(CN)₆]⁴⁻. Pt/ZnIn₂S₄ showed appreciable H_2 evolution rate (4.8 µmol/h). On the other hand, Pt/CdIn₂S₄ showed quite low activity (0.8 µmol/h). ATR-FTIR analysis revealed that hexacvanometallates. such as $K_2[CdFe(CN)_6]$ [1] and $K_2[ZnFe(CN)_6]$ [2] were formed on Pt/CdS and Pt/ZnIn2S4, respectively, after each reaction, both of which showed appreciable H₂ evolution. These hexacyanometallates would be generated from the reaction of [Fe(CN)₆]⁴⁻ and Cd²⁺ or Zn²⁺ ion derived from photocorrosion during photocatalytic reaction. Rubin et al. have reported that such hexacyanometallate formed on CdS electrode efficiently scavenged photogenerated holes, leading to increased rate of oxidation of $[Fe(CN)_{6}]^{4-}$ and also suppression of photocorrosion of CdS. To improve the activity for H_2 evolution, the hexacyanometallate K₂[CdFe(CN)₆] prepared in advance, was loaded onto ZnIn2S4 and CdIn2S4 particles. The loading indeed improved the H₂ evolution rate in both cases (ZnIn₂S₄: 4.8 \rightarrow 15 μ mol/h, CdIn₂S₄: 0.8 \rightarrow 6 μ mol/h). Finally, we demonstrated that combination of metal sulfides as H2-evolving photocatalyst and O₂ evolution system (TaON photoanode [3]) could split water stably into H₂ and O₂ under visible light irradiation (Fig.1 inset).

Fig. 1 Time course of H_2 evolution over Pt/CdS in various reaction solutions under visible light. Inset: Z-scheme water splitting using Pt/CdS and CoO_x/TaON photoanode.

REFERENCES

 Rubin, H. D.; Arent, D. J.; Humphrey, B. D.; Bocarsly, A. B. Electrochem. Soc. 1987, 134, 93.
Reguera, E.; Gomez, A.; Balmaseda, J.; Contreras, G.; Escamilla, A. Struct. Chem., 2001, 12. 59.

[3] Higashi, M.; Domen, K.; Abe, R. J. Am. Chem. Soc. 2012, 134, 6968.