Selective Hydrogenolysis of Tetrahydrofurfuryl alcohol over Supported Pt Catalysts

Shixiang FENG¹, Aiko NAGAO¹, Hiroki,

MIURA^{1,2,3}, Tetsuya SHISHIDO^{1, 2,3} ¹Dept. of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan Univ., Tokyo, Japan ²ReHES, Tokyo Metropolitan Univ., Tokyo, Japan

³ESICB, Kyoto Univ., Kyoto, Japan *E-mail: shishido-tetsuya@tmu.ac.jp

Tetrahydrofurfuryl alcohol (THFA) is one of the furfural derivatives, which has been produced through multistep reaction process (hydrolysis-dehydration-hydrogenation) in the conversion of hemicellulose in non-edible biomass. Among various processes for converting THFA to value-added chemicals, selective C-O hydrogenolysis the over heterogeneous catalysts provide a significant route to the production of 1,2-, and 1,5pentanediol (PeD) (Scheme 1). In this study, we investigated the relationship between catalytic performances of Pt/WO₃/ZrO₂ catalysts with various loading amount of WO₃ in the THFA hydrogenolysis and local structures around tungsten species.

Figure. 1 shows the results of THFA hydrogenolysis over supported WO₃, Nb₂O₅, and V₂O₅ catalysts. 1,5-PeD was mainly produced together with 1-pentanol (1-PeOH). The activity of supported WO₃ catalysts was higher than those of supported Nb₂O₅ and V₂O₅ catalysts. Among the supported WO₃ catalysts, Pt/WO₃/ZrO₂ gave the highest yield of 1,5-PeD.

The loading amount of WO₃ significantly affected the products distribution in hydrogenolysis of THFA (Fig. 2). The yield of 1,5-PeD was increased with increase of WO₃ loading, and reached the highest at 5 wt% loading (with 36.4% yield accounting for 64.8% selectivity). According to WO₆ unit size (0.22 nm^2) [1] and structural characterization, in the case of 5 wt% WO₃ loading, the surface coverage of ZrO₂ with WO₃ was ca. 50 %. When WO₃ loading was further increased over 10 wt%, inert WO₃ crystals as well as a decrease of Brønsted acidity would occur and subsequently resulted in reduction of catalytic

activity. This result suggests that hydroxyl groups located at the boundary between WO_3 species domain and ZrO_2 (W-(OH))-Zr), work as active sites for the selective hydrogenolysis of THFA to 1,5-PeD.

Scheme.1 Reaction pathway of THFA hydrogenolysis.

Fig. 2 Yield of 1,5-PeD over $Pt/WO_3/ZrO_2$ and surface coverage of ZrO_2 with WO_3 . Conditions: 423 K, H₂ 5MPa, 5 h

REFERENCES

[1] C. Pfaff, M. J. PérezZurita, C. Scott, P. Patiño,
M. R. Goldwasser, J. Goldwasser, F. M. Mulcahy,
M.Houalla, D. M. Hercules, Catal. Lett., 49 (1997)
13.