Improvement of CO₂ reduction catalytic activity of biocatalyst by artificial co-enzyme

<u>Shusaku Ikeyama</u>^{1*}, Yutaka Amao^{1,2} ¹Graduate School of Science, Osaka City University, Osaka, Japan ²The Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, Japan

*E-mail: ikeyama@sci.osaka-cu.ac.jp

1. Introduction

Formate dehydrogenase (FDH) is an attractive biocatalyst for the CO₂ reduction, because CO₂ is converted to HCOOH by FDH at expense of NADH as reductive co-enzyme, under ambient conditions, in neutral aqueous solution. But FDH mainly catalyzes the conversion of HCOOH to CO₂, concented with the reduction of NAD⁺ to NADH. Thus, a method to suppress the FDH catalytic activity of the oxidation of HCOOH to CO2 has been needed for a long time. To solve this problem, viologen reduced form of derivatives. methylviologen and diquat, were used as artificial co-enzymes for FDH in the conversion of CO_2 to HCOOH and the CO_2 reduction catalytic efficiency of FDH was improved by using those artificial co-enzymes in place of NADH^[1,2]. In addition, the use of viologen derivatives effectively suppressed the reverse reaction by FDH.

To improve the CO_2 reduction catalytic activity of FDH, viologen derivatives with different ionic group (amino or carboxyl) shown in Fig. 1 were synthesized as novel artificial co-enzymes for FDH.

2. Experiment

To clarify the effect of ionic group in viologen derivative on the CO_2 reduction to HCOOH with FDH, kinetic studies were carried out. For enzyme kinetics analysis, CO_2 - HCOOH conversion with dithionite-reduced viologen derivative with ionic group and FDH was carried out by following condition. The sample solution was consisted of viologen derivative, sodium dithionite (4 mM) and FDH (6.4 μ M) in CO₂ saturated 1 mM sodium pyrophosphate buffer (pH 7.4).

3. Result and discussion

Each viologen derivative with ionic group acted as an artidficial co-envzme for FDH in the conversion of CO₂ to HCOOH. Table 1 shows the obtained parameters from the kinetics analysis. The catalytic efficiency value (k_{cat}/K_m) of the reduced form of 1,1'diaminoethyl-4,4'-bipyridinium salt (DA) was the largest in other viologen derivatives. On the other hand, the k_{cat}/K_m value of the reduced 1,1'-dicarboxymethyl-4,4'form of bipyridinium salt (DC) was the smallest in others. These results indicated that CO₂ reduction for k_{cat} / K_m value was influenced by ionic group on the viologen derivative and the CO₂ reduction catalytic activity was improved by using viologen derivative with amino group.

Fig. 1 Chemical structures of artificial coenzyme with ionic group.

Table 1. Kinetic parameters for CO_2 to HCOOH conversion with dithionite-reduced artificial co-enzyme and FDH

artificial co chizyline and i Difi			
	K_m	k_{cat}	k_{cat}/K_m
	μM	min ⁻¹	µM ⁻¹ ∙min ⁻¹
DA	17	4.3	0.25
MA	118	2.3	1.9×10 ⁻²
MV	212	1.9	9.0×10 ⁻³
MC	292	1.5	5.1×10 ⁻³
DC	371	0.3	9.3×10 ⁻⁴

(K_m : Michaelis constant, k_{cat} : turn over number, k_{cat}/K_m : CO₂ reduction catalytic efficiency)

REFERENCES

[1] Y. Amao, S. Ikeyama, Chem. Lett., 44 (2015) 1182.

[2] S. Ikeyama, R. Abe, S. Shiotani, Y.Amao, Chem. Lett., 45 (2016) 907.