Efficient conversion of C4 unsaturated alcohols to 1,3-butadiene

Daolai Sun ${ }^{1}$, Yasuhiro Yamada ${ }^{1}$, Satoshi Sato ${ }^{1 *}$
${ }^{1}$ Graduate School of Engineering, Chiba University, Chiba, 263-8522, Japan.

*E-mail: satoshi@faculty.chiba-u.jp
1,3-Butadiene (BD) is an important bulk chemical used for manufacturing rubber and polymers. Currently, BD is primarily produced as a by-product in ethylene plant through the naphtha steam cracking [1]. Because of the depletion of fossil resources, the production of BD from renewable biomass resources has attracted much attention. The catalytic conversion of bioethanol to BD is a wellknown alternative route. On the other hand, butanediols such as $1,3-, 1,4-$ and $2,3-$ butanediol can be derivable from biomass by fermentation as well as catalytic conversion, and they also have potential as resources for producing biomass-derived BD.

Scheme. 1 Production of 1,3-butadiene from butanediols via unsaturated alcohols.

Scheme 1 shows the expected production routes of BD from butanediols. It is obvious that the conversion of butanediols to BD requires two-step dehydration via unsaturated alcohols as intermediates. It was known that solid acids such as $\mathrm{Al}_{2} \mathrm{O}_{3}$ mainly convert 2,3butanediol and 1,4-butanediol to 2-butanone and tetrahydrofuran, respectively [1], and convert 1,3-butanediol to a wide variety of products including 3-buten-1-ol, formaldehyde, and acetaldehyde $[2,3]$. The fact makes the direct conversion of butanediols to BD to be difficult. In contrast, we have found that rare earth metal oxides are effective for the selective dehydration of butanediols to
unsaturated alcohols [4]. Therefore, in this study, we focus on the second step, the dehydration of C 4 unsaturated alcohols to BD .

The dehydration of unsaturated alcohols was performed in a fixed-bed down-flow glass reactor at a W/F of 0.34 in N_{2} flow. Ordinary solid acid catalysts, such as $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$, and TiO_{2}, and rare earth metal oxides, such as $\mathrm{Yb}_{2} \mathrm{O}_{3}$ and CeO_{2}, were tested in the dehydration of each unsaturated alcohol.

In the reaction of 3-buten-1-ol, the acid catalysts decomposed 3-buten-1-ol into propylene, therefore, BD could not be selectively produced. In contrast to the acid catalysts, CeO_{2} inhibited the decomposition of 3-buten-1-ol, and gave a relatively high BD selectivity of 54.5% with 90% conversion at $400{ }^{\circ} \mathrm{C}$. In the dehydration of 2-buten-1-ol and 3-buten-2-ol, however, acid catalysts were effective for the formation of BD . Among the tested catalysts, a commercial $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$ showed a relatively high catalytic performance, whereas it deactivated rapidly. We prepared a series of $\mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ catalysts by depositing SiO_{2} species onto $\mathrm{Al}_{2} \mathrm{O}_{3}$ support, and the $\mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ with a SiO_{2} content of $10 \mathrm{wt} . \%$ showed a more stable catalytic activity than the commercial $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$.

Furthermore, we tested metal-modified $\mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ catalysts under H_{2} flow conditions. The modification of $\mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ by Ag with a loading of 3-5 wt. \% was found to be efficient for inhibiting the coke formation as well as improving the catalytic stability of $\mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$, and BD yields higher than 90% were achieved in the dehydration of both 2-buten-1-ol and 3-buten-2-ol at $260{ }^{\circ} \mathrm{C}$. The loading of Ag on $\mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ reduced the acid strength, which contributed to the stable activity of Agmodified $\mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$. It is concluded that the additive Ag would work at a metal state during the reaction, and inhibited the catalytic deactivation together with H_{2}.

REFERENCES

[1] H. Duan, Y. Yamada and S. Sato, Chem. Lett., 45 (2016) 1036.
[2] S. Sato, R. Takahashi, T. Sodesawa, N. Honda and H. Shimizu, Catal. Commun., 4 (2003) 77.
[3] D. Sun, S. Arai, H. Duan, Y. Yamada and S. Sato, Appl. Catal. A: Gen., 531 (2017) 21.
[4] S. Sato, F. Sato, H. Gotoh and Y. Yamada, ACS Catal., 3 (2013) 721.

