Facile Preparation of HNb₃O₈ Nanosheet with More Acid Sites

Jongha Park¹ and Young-Woong Suh^{1,2}* ¹Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea ²Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of

Korea

*E-mail: ywsuh@hanyang.ac.kr

Acid catalysts have been extensively studied in alcohol dehydration and much effort is paid to new catalyst development for highly efficient acid sites. There are two approaches for the preparation: one is to enhance acid site strength and the other is to increase the quantity of acid sites. In this work we intended to adjust the acid site quantity for layered (i.e., sheet-type) acid catalysts. For this purpose niobate nanosheet (e-HNb₃O₈) was selected because the synthesis protocol is well defined in literature [1]. Typically, the first step is solid-state reaction of K₂CO₃ and Nb₂O₅ in a molar quantity close to 1:3. Then, the solid mixture was calcined above 1000 °C, followed by ion exchange in a concentrated HNO₃ solution and subsequent exfoliation by tetraalkylammonium hydroxide (e.g., TBAOH). When the efficiency of each step was examined in a preliminary work, we found that the first solid-state reaction is a key step for affecting the final exfoliation step and thereby enhancing the product yield of e-HNb₃O₈ materials.

In the solid-state reaction such that K_2CO_3 was mixed with Nb₂O₅ in a mortar for a prolonged time, some portions of K⁺ or CO₃²⁻ ion diffuse into the lattice of Nb₂O₅ solid., Thus, aqueous K_2CO_3 solutions of different concentration were contacted with Nb₂O₅ in order to increase the amount of diffused ions. The following steps were identical in all samples. The final catalysts were labelled as e-HNb₃O₈-Lx where x is 100, 200 or 400. For comparison, the sample was also prepared by the solid-state reaction (e-HNb₃O₈-SS).

Interestingly, the product yield increased with the H_2O volume: based on the initial weight of Nb₂O₅, the final recovery efficiency

was 25.5%, 64.9%, 72.4% and 88.1% for for e-HNb₃O₈-SS, e-HNb₃O₈-L100, e-HNb₃O₈-L200 and e-HNb₃O₈-L400, respectively. It could be assumed from this result that e-HNb₃O₈-L400 shows a larger specific surface area, more acid sites exposed to the reactant, and consequently a higher catalytic activity. Our presumption is confirmed by the catalytic results, BET surface area and pyridinechemisorbed FT-IR spectra, which are summarized in Table 1.

Table 1. Results of the prepared HNb_3O_8 nanosheet samples

	e-HNb ₃ O ₈ -SS	e-HNb ₃ O ₈ -L100
Conversion of 2-	9.2	69.3
heptanol (mol%)	7.2	07.5
BET surface area	11	41
$(m^2 g^{-1})$		
Acid amount	21.2	45.3
$(\text{mmol } \text{g}^{-1})$		
	e-HNb ₃ O ₈ -L200	e-HNb ₃ O ₈ -L400
Conversion of 2-	72.4	74.1
heptanol (mol%)		
BET surface area	47	53
$(m^2 g^{-1})$		
Acid amount	107	51 5
1		

From this data, we believe that the concentration of K₂CO₃ affects the efficiency of the exfoliation step. This will be caused by the infiltration degree of K^+ or CO_3^{2-} ion into the Nb₂O₅ lattice. Thus, the ball-milled samples prepared in this work have been characterized by PXRD and TGA-MS. The shifts of Nb₂O₅ reflections and CO₂ emission temperature reveal that more K^+ and/or CO_3^{2-} ion exist inside the lattice when a less concentrated solution is used. Consequently, preparation method is facile and our convenient for producing HNb₃O₈ nanosheet at a higher yield and with higher accessible acid sites and, in turn, enhanced activity in alcohol dehydration reactions.

REFERENCES

[1] N. Lee, Y.-M. Chung, Appl. Surf. Sci., 370 (2016) 160.

[2] A.S. Dias, S. Lima, D. Carriazo, V. Rives, M. Pillinger, A.A. Valente, J. Catal., 244 (2006) 203.

[3] A. Takagaki, D. Lu, J.N. Kondo, M. Hara, S. Hayashi, K. Domen, Chem. Mater., 17 (2005) 2487.