The effect of acidity on Ni catalyst supported on P modified Al₂O₃ for the dry reforming of methane

<u>Seonu Bang</u>, Sung Woo Baek, Chae-Ho Shin^{*} Department of Chemical Engineering, Chungbuk National University, Chungbuk 28644, Korea

*E-mail: chshin@chungbuk.ac.kr

The dry reforming of methane (DRM) has focused by many researchers due to the growing interest in the regeneration of CO_2 , a global warming gas, and concerns over the depletion of petroleum resources.

This DRM reaction converts greenhouse gases into syngas and it is more suitable for the Fischer-Tropsch process than the steam reforming of methane (SRM) as it produces a lower H₂/CO syngas. In this respect, supported nickel catalysts have been widely studied, but they are vulnerable to the carbon deposition via CH₄ decomposition and Boudouard reaction (2CO \leftrightarrow C + CO₂), which leads to the deactivation of catalyst for DRM.

It has been reported that the addition of P to alumina support improves the thermal stability and modifies the acid-base surface properties [1]. And some researchers have studied that the basic modifiers, the alkali metal oxides (K₂O, Na₂O etc.) or alkaline earth metal oxides (MgO, CaO, etc.), can increase the concentration of Lewis basicity on the support and decrease the carbon deposition [2,3].

Hence, we discussed the effect of P addition on acidity and coke formation of Ni/Al2O3 catalysts for DRM. A series of modified Ni/Al₂O₃ catalysts with various P content (denoted as Ni/xPA1, x = 0, 0.5, 1, 2, 4 and 6 wt.% P) were prepared by an incipient wetness impregnation method using H₃PO₄ for the support and Ni(NO₃)₂·6H₂O. The Ni content of Ni/xPAl catalyst was fixed to 10 wt.%. Catalyst characterizations were performed by N₂-sorption, XRD, XPS, H₂-chemisorption, temperature-programmed desorption of isopropanol (IPA-TPD) and CO₂-TPD. The DRM reaction was conducted in flowing a mixture of CH₄:CO₂:N₂ = 40:40:20 in vol.% at 750 $^{\circ}$ C for 20 h after reduction at 750 °C for 1 h.

Table 1 shows the catalytic performance of Ni/xPAl samples at 750 °C for 20 h. Although the initial conversions of CH₄ and CO₂ decreased with the increasing P content, the addition of P to Al₂O₃ support enhanced the stability of catalysts at an optimum amount. The tendency was well correlated with the maximum peak temperature in IPA-TPD profiles as shown in Fig. 1. It indicates that CO₂ is more easily adsorbed when the base strength on the surface of catalyst increases with the optimum P content. Thus the equilibrium of Boudouard reaction, one of the major causes of catalyst deactivation in DRM reaction, will shift toward left, which may hinder carbon deposition on the surface of catalyst.

Table 1. Catalytic performance of Ni/xP-Al₂O₃ catalysts for DRM reaction at 750 °C.

Catal. ^a	Conversion (%)				Deactivation rate (%) ^b		H ₂ /CO
	CH_4		CO_2		CH_4	CO_2	
	Initial	20 h	Initial	20 h			
Ni/Al	70.2	54.6	68.4	57.1	22.2	16.5	0.887
Ni/0.5PAl	68.0	62.3	65.0	59.8	8.4	8.0	0.888
Ni/1PA1	66.4	63.2	63.0	60.8	4.9	3.4	0.883
Ni/2PA1	62.5	63.6	60.1	61.3	-1.7	-2.1	0.871
Ni/4PAl	52.6	50.7	51.7	49.8	3.7	3.7	0.836
Ni/6PAl	37.8	32.4	34.9	27.6	14.4	21.0	0.845

^a Reduced at 750 °C for 1 h before reaction.

 b Defined as (initial conv. -20 h conv.)/ initial conv. x 100%. c GHSV = 60,000 cm³ g⁻¹ h⁻¹, CH₄:CO₂:N₂ = 40:40:20 vol% and total flow rate = 100 cm³ min⁻¹.

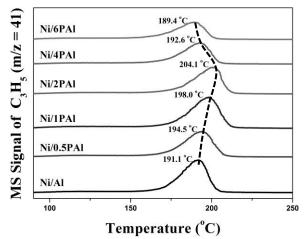


Fig. 1. IPA-TPD profiles of reduced $Ni/xP-Al_2O_3$ catalysts.

REFERENCES

[1] C. Morterra et al., J. Catal., 152 (1995) 384.

[2] K. Sutthiumporn, S. Kawi, Int. J. Hydrog. Energy, 36 (2011) 14435.

[3] A.S.A I-Fatesh et al., Chin. J. Catal., 32 (2011) 1604.