Effect of pore structure of TiO₂ on the SO₂ poisoning over V₂O₅/TiO₂ catalysts for selective catalytic reduction of NO_x

<u>Seunghee Youn¹</u>, Inhak Song¹, Hwangho Lee¹, Sung June Cho², Do Heui Kim^{1,*} ¹School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea ²Department of Applied Chemical Engineering, Chonnam National University, Kwangju, Korea

*E-mail: dohkim@snu.ac.kr

Selective catalytic reduction (SCR) of NO_x is a principal technology for the removal of NO_x from stationary and mobile sources. In practical SCR system, vanadium catalyst is widely used for DeNO_x treatment [1]. SCR catalysts are generally deactivated in the presence of SO₂. However, a question about how the activity of the catalyst is affected in the presence of SO₂ remains unclear.

We prepared vanadium catalysts supported on TiO₂ containing 5wt% V₂O₅, denoted as 5wt% VT. Mesoporous TiO₂ (DT-51) and microporous TiO₂ [2] were used as support with anatase phase. In this work, two types of vanadium catalysts supported on TiO₂ with different pore structure were investigated when they were exposed to SO₂. Thus we aimed at examining the effect of pore structure of TiO₂ support on SO₂ poisoning when NH₃ SCR was carried out.

 NO_x conversion of 5wt% VT(DT-51) decreased by 15% whereas only under 5% decline was observed on 5wt% VT(micro) at 350°C when SO₂ existed in the feed. Also, Fig.1 showed the amount of SO₂ desorption from pre-adsorbed sulfur species. Although all catalysts were treated with 300ppm SO₂ for 3h, 5wt% VT(DT-51) generated 2.5 times higher SO₂ than 5wt% VT(micro). In other words, different affinity with SO₂ is observed depending on the TiO₂ type.

Ammonium bisulfate (NH₄HSO₄: ABS) is known to form on the SCR catalysts via the reaction between NH₃ and H₂SO₄, generated from H₂O and SO₂. To distinguish the sulfate species formed on catalysts, model sulfate compounds, NH₄HSO₄ as diluted solution, was intentionally impregnated on VT catalysts [3]. Such approach allowed us to analyze the sulfur each catalyst. species of 0.1M ABS impregnated 5wt% VT samples had different weight loss patterns at similar temperature range during TG analysis. According to Fig. 2, sulfate species on the catalysts decomposed with different weight loss (%) at 420 - 440°C and 546 - 547°C. At low temperature range around 430°C, larger amount of sulfate species decomposed on 5wt% VT(micro) than 5wt% VT(DT-51).

Therefore, it is summarized that V_2O_5/TiO_2 (micro) has lower affinity with SO₂ and is also able to decompose sulfate species more readily than V_2O_5/TiO_2 (DT-51), which can explain the less decline of SCR activity in the presence of SO₂ over the former catalyst.

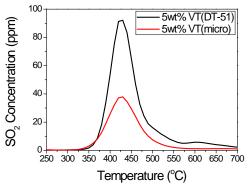


Fig. 1. Desorption of SO_2 of pre-sulfated 5wt% V_2O_5/TiO_2 catalysts.

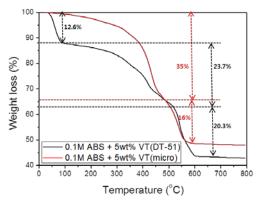


Fig.2. TG-DTA of ammonium bisulfate impregnated V_2O_5/TiO_2 catalysts.

REFERENCES

[1] L.Zhang, L.Dong et al., Appl. Cat. B:Environ., 165 (2015) 589.

[2] S.G.Lee, H.J.Lee, I.Song, S.Youn, D.H.Kim, S.J.Cho, Sci. Rep. 5 (2015) 12702.

[3] D. Ye, X. Gao et al., RSC Chem. 6 (2016) 55584.