Study on metal oxide photocatalysts for CO₂ reduction with H₂O

 <u>Yuma Kato</u>¹, Muneaki Yamamoto², Akiyo Ozawa¹ and Tomoko Yoshida³
¹ Graduate School of Engineering, Osaka City University Osaka, Japan
² Graduate School of Engineering, Nagoya University, Nagoya, Japan
³ Advanced Research Institute for Natural Science, Osaka City University Osaka, Japan

*E-mail:dkdklive17@gmail.com, tyoshida@ocarina.osaka-cu.ac.jp

In artificial photosynthesis, carbon dioxide can be reduced and converted to useful chemical materials in C1 chemistry such as carbon monoxide and methane. Although the photocatalytic CO₂ reduction with hydrogen has been reported [1], there are still few studies about CO₂ reduction with water. In the present study, we examined various metal oxides whether they promote CO₂ reduction with water.

We prepared silver loaded metal oxide samples in an impregnation method using aqueous solution of silver nitrate. The loading amount of silver cocatalyst was 0.1 wt%. Photocatalytic activity for each sample was examined by the CO and H₂ production rates. To estimate the charge separation efficiency of the photo-generated electrons and holes, we have performed photoelectrochemical measurements of the samples. We also carried out in-situ FT-IR measurements of the samples at each reaction steps.

Fig.1 shows the CO production rates of the photocatalytic active samples after 5h reaction. Among the Ag loaded metal oxide samples, Ag/MgO, Ag/Ga₂O₃, Ag/Y₂O₃, Ag/ZrO₂, and Ag/TiO₂ promoted the CO₂ reduction to produce CO while Ag/La₂O₃, Ag/Yb₂O₃, Ag/NiO and Ag/Nd₂O₃ did not. We found that metal oxides involving metal ions with closed shell electronic structures such as Mg²⁺, Ga³⁺, Y³⁺, Zr⁴⁺ and Ti⁴⁺ have the potential for CO₂ reduction with water. However Ag/La₂O₃ (La³⁺) having the closed shell electronic structure did not proceed the reaction.

In the photoeletrochemical measurements of Ag/Ga₂O₃, Ag/ZrO₂, Ag/MgO, Ag/TiO₂ and

Ag/Y₂O₃ exhibited higher current densities than Ag/NiO and Ag/Nd₂O₃. The closed shell electronic structures of metal ions might be effective for the charge separation of electrons and holes. However, Yb₂O₃ (Yb³⁺) with [Xe]4f¹³ electron configuration showed high current density.

To investigate why the CO_2 reduction could not proceed over Ag/La_2O_3 and Ag/Yb_2O_3 , we carried out in-situ FT-IR measurements of CO_2 adsorbates on these samples. It was revealed that few amount of CO_2 molecules were adsorbed on Ag/La_2O_3 since a lot of CO_2 species were strongly chemisorbed before introduction of CO_2 molecules.

On the other hand, by introduction of CO_2 molecules to photocatalytic inactive Ag/Yb₂O₃ and active Ag/Y_2O_3 , the IR bands assigned to monodentate bicarbonate species were observed for both samples. After introduction of CO₂, followed by photoirradiation for 1 h, the above bands decreased only for Ag/Y_2O_3 . monodentate suggesting that bicarbonate would convert a species to reaction intermediate such as the formate species only over Ag/Y₂O₃ [2]. Therefore the amount of CO₂ adsorption as well as chemical states of CO₂ adsorbates would be one of the important factors relating to the photocatalytic activity for CO₂ reduction.

Fig.1 CO production rates of the photocatalytic active samples after 5h reaction. (a) Ag/Ga_2O_3 (b) Ag/ZrO_2 (c) Ag/MgO (d) Ag/TiO_2 and (e) Ag/Y_2O_3 .

REFERENCES

K. Teramura, H. Tsuneoka, T. Shishido and T. Tanaka. Chem. Phys. Lett. 467 (2008) 191-194.
M. Yamamoto, T. Yoshida, N. Yamamoto, T. Nomoto, Y. Yamamoto, S. Yagi and H. Yoshida, J. Mater. Chem. A, 3 (2015) 16810-16816.