Visible-light Activation of TiO₂ Photoanode by Loading CoO_x

<u>Hideyuki Tanaka</u>, Kazuhiko Maeda* Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, Japan *E-mail: maedak@chem.titech.ac.jp

Photocatalytic water splitting has attracted attention in recent years due to rising interest in artificial photosynthesis. Among various semiconductors, TiO₂ is a promising candidate as a water-splitting photocatalyst due to its superior photoreactivity, long-term stability and low cost. However, TiO₂ is only active under ultraviolet light, and thus solar to hydrogen (STH) efficiency reaches only 3.3% even if quantum efficiency (Q.E.) is 100%. Therefore, it is necessary to activate TiO₂ towards visible-light water splitting to improve STH efficiency. Recently, we reported that TiO_2 modified with $Co(OH)_2$ is capable of oxidizing water into O₂ under visible-light irradiation at wavelengths of up to 850 nm.^[1] It showed a potential to use cobalt-based compounds to activate TiO₂ towards visiblelight water splitting.

In this work, CoO_x was loaded on a TiO₂/FTO electrode to activate TiO₂ towards visible-light water splitting. TiO₂ film was fabricated by soaking a cleaned FTO substrate in a 0.15 M TiCl₄ aqueous solution at 343 K for 120 min, then rinsed with distilled water and finally annealed at 723 K for 30 min in air. CoO_x was loaded on the as-prepared TiO₂/FTO electrode by soaking TiO₂/FTO electrode in a 0.1 M Co(NO₃)₂ aqueous solution for 30 min followed by heating in air at 423 K for 60 min.

From X-ray diffraction (XRD) analyses of TiO₂/FTO, CoO_x/FTO and CoO_x/TiO₂/FTO electrodes, no diffraction peaks assigned to TiO_2 or cobalt oxide were observed, which indicated that fabricated films consisted of amorphous phase. Scanning electron microscopy (SEM) observation showed that CoO_x particles having a diameter of 5-10 µm were loaded on TiO₂/FTO substrate. UV-visible spectroscopy confirmed visible-light absorption of CoO_x/TiO₂/FTO electrode (Fig. 1), which not observed in TiO₂/FTO were and CoO_x/FTO electrodes. This suggests that there is a relatively strong electronic interaction

between CoO_x and TiO_2 , which contributes to the visible-light absorption of the $CoO_x/TiO_2/FTO$ electrode. The energy gap of $CoO_x/TiO_2/FTO$ was estimated to be approximately 1.85 eV from the onset wavelength (670 nm) of the absorption.

Photoelectrochemical measurement under visible light ($\lambda > 500$ nm) was performed for TiO₂/FTO, CoO_x/FTO and CoO_x/TiO₂/FTO electrodes. Anodic photocurrent, assignable to water oxidation, was observed only for CoO_x/TiO₂/FTO electrode (Fig. 2). This suggests that the prepared CoO_x/TiO₂ electrode functions as a visible-light active photoanode for water splitting.

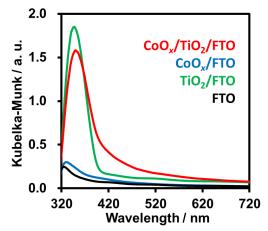


Fig. 1 UV-visible spectroscopy of FTO, TiO_2/FTO , CoO_x/FTO and $CoO_x/TiO_2/FTO$.

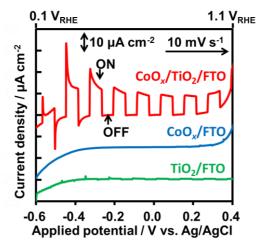


Fig. 2 PEC measurements of TiO₂/FTO, CoO_x/FTO and CoO_x/TiO₂/FTO. [0.1 M Na₂SO₄ (aq), pH = 9, 300 W Xe lamp (20 A, λ > 500 nm), 10 mV s⁻¹]

REFERENCES

[1] K. Maeda, K. Ishimaki, Y. Tokunaga, D. Lu, M. Eguchi, Angew. Chem. Int. Ed., 55 (2016) 8309.