ZnO/ZnCrLDH heterostructure with Enhanced Photoelectrochemical Water Oxidation Activity

<u>Yoon Bin Park</u>¹, Jae Sung Lee^{2†} ¹Department of Chemical Engineering, POSTECH, Pohang, Korea ²School of Energy and Chemical Engineering, UNIST, Ulsan, Korea *E-mail: jlee1234@unist.ac.kr

As an photoelectrochemical water oxidation ZnO/ZnCrLDH heterostructured electrode. photoanode were prepared by hydrothermal and electrodeposition method. ZnO/ZnCrLDH heterojunction had core shell structure after ZnO/ZnCrLDH synthesis. heterojunction photoanode enhanced photoelectrochemical water oxidation activity under simulated solar light (100 mW cm⁻²) irradiation. ZnO/ZnCr-LDH showed 1.66 times higher photocurrent density (113 µA cm⁻²) compare to pristine ZnO photoanode (68 µA cm⁻²). Increased photocurrent density was affected by band structure of ZnO and ZnCrLDH, which was suitable for separating photogenerated electrons and holes.

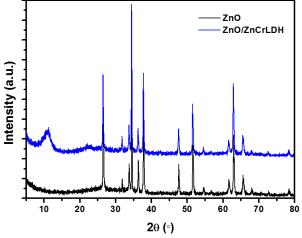


Fig.1 XRD patterns of ZnO and ZnO/-ZnCrLDH

Fig.2 Photocurrent density of ZnO, ZnCrLDH, ZnO/ZnCrLDH under 1 sun condition.

REFERENCES

A. Fujishima and K. Honda, 238 (1972) 37.
C.G. Silva, Y. Bouizi, V. Fornes and H. Garcia, J. Am. Chem. Soc, 113 (2009) 13833.
S. Cho, J.-W. Jang, Y.B. Park, J.Y. Kim, G. Magesh, J.H. Kim, M. Seol, K. Yong, K.-H. Lee and J.S. Lee, Energy Environ. Sci., 7 (2014) 2301.