Low temperature dry reforming of methane in an electric field over Ladoped Ni/ZrO₂ catalysts

<u>Tomohiro Yabe</u> Kenta Mitarai, Shuhei Ogo and Yasushi Sekine* Department of Applied Chemistry, Waseda University, Tokyo, Japan

*E-mail: ysekine@waseda.jp

Introduction

Dry (CO₂) reforming of methane (DRM), as shown in the following equation, is a 'green' hydrogen/syngas production process from the viewpoint of an environment and energy. [1]

 $CH_4 + CO_2 \rightarrow 2CO + 2 H_2$

 $\Delta H_0^{298} = 247.2 \text{ kJ mol}^{-1}$

DRM requires high temperatures: also, catalysts are easily deactivated and carbon deposition on catalysts is unavoidable.

Recently, utilization of an electric field has been reported for lowering reaction temperatures for several catalytic reactions. [2, 3] So, we conducted catalytic DRM in the electric field in order to achieve high CH₄ and CO₂ conversion even at low temperatures, over La-doped Ni/ZrO₂ catalysts.

Experimental

Catalyst-supports, 10 mol%La-ZrO₂ (La-ZrO₂) were prepared using a complex polymerized method. Then a supported metal was loaded on La-ZrO₂ with 1wt% using an impregnation method. Calcination was conducted at 973 K. These catalysts are designed as X/La-ZrO₂ (X = Fe, Co, Ni, Cu, Pd or Pt.)

Charging amount of catalyst for DRM activity tests were 100 mg. In the screening tests, the feed gas was supplied at $CH_4:CO_2:Ar = 1:1:2$; the total flow rate was 100 mL min⁻¹. Products were analyzed using a GC-FID and a GC-TCD. The electric field was applied using a DC high-voltage power supply.

Results and discussion

To discover suitable catalysts for DRM in the electric field, various metal-supported La- ZrO_2 oxide catalysts were investigated to assess their catalytic activities. (as shown in Table 1) Among these catalysts, higher CH₄ were obtained over Co/La-ZrO₂, Ni/La-ZrO₂, and Pt/La-ZrO₂ catalysts than other listed catalysts. We specifically chose Ni/La-ZrO₂ catalyst because of high H₂/CO ratio (=0.83). To investigate the carbon deposition on DRM reaction in the electric field, the catalytic activity test was conducted in conditions of high CH₄ conversion. (as shown in Table 2) The amount of the carbon deposits after DRM in the electric field was low thanks to the low reaction temperature.

Conclusion

Ni/La-ZrO₂ catalyst was the most appropriate catalyst for DRM in the electric field. High DRM selectivity, high H₂/CO ratio and low amounts of carbon deposition were demonstrated even in conditions of high CH₄ conversion.

Table 1Catalytic activities for DRM in anelectric field over X/La-ZrO2 catalysts. [4]

Catalyst	Temp.	Field Intensity	CH ₄ conv.	CO ₂ conv.	CO sel.	H ₂ /CO
	(K)	$(V \text{ mm}^{-1})$	(%)	(%)	(%)	(-)
La-ZrO ₂	596	151	1.9	1.9	74.4	0.76
Fe/La-ZrO ₂	649	228	6.9	14.6	91.2	0.23
Co/La-ZrO ₂	619	292	20.3	31.2	99.4	0.57
Ni/La-ZrO ₂	555	243	22.8	24.8	100	0.83
Cu/La-ZrO ₂	626	256	3.9	3.6	88.5	0.99
Pd/La-ZrO ₂	533	125	6.4	9.8	100	0.52
Pt/La-ZrO ₂	580	271	21.0	23.6	100	0.80

Table 2 Catalytic activities and amounts of carbon deposition under a high conversion condition on DRM. [4]

		Power	CH ₄ conv. CO ₂ conv.		$\rm H_2/CO$	Carbon deposition	
		(W)	(%)	(%)	(-)	$(mg g_{-cat}^{-1})$	
not imposed EF	initial	-	63.5	52.9	1.2	>39.6	
	140 min	-	64.0	77.0	0.81		
imposed EF	initial	8.1	74.5	85.3	0.87	1.5	
	140 min	6.9	77.2	87.6	0.88		

This work was supported by CREST, JST.

REFERENCES

[1] M.C.J. Bradford, M.A. Vannice, *Catal. Rev. Sci. Eng.*, 41 (1999) 1.

[2] Y. Sekine, M. Haraguchi, M. Tomioka, M. Matsukata, E. Kikuchi, J. Phys. Chem. A, 114 (2010)

[3] K. Sugiura, S. Ogo, K. Iwasaki, T. Yabe, Y. Sekine, *Scientific Reports*, 6 (2016) 25154.

[4] T. Yabe, K. Mitarai, K. Oshima, S. Ogo, Y. Sekine, *Fuel Process. Technol.*, 158 (2017) 96.