Reaction characteristics of K-doped Co₃O₄ catalyst with addition of promoter for N₂O decomposition

<u>Ra Hyun Hwang¹</u>, Ji Hye Park¹, Jeong Hun Baek¹, Kwang Bok Yi^{2*}

¹Graduate School of Energy Science and Technology Chungnam National University, Daejeon, Korea ²Department of Chemical Engineering Education Chungnam National University, Daejeon, Korea

*E-mail: cosy32@cnu.ac.kr

N₂O is one of the representative greenhouse gases and the impact of N₂O on global warming is about 10% compared to that of CO₂. However, N₂O is very stable in the atmosphere and remains for 150 years, so the global warming potential (GWP) of N₂O is 310 times higher than that of CO_2 [1]. N_2O reach to stratosphere and destroys the ozone layer. Therefore, it is important to reduce N₂O emission source from and there are various processes such as HC-SCR, NH₃-SCR and decomposition. It was reported that nitrous oxide is easily decomposed to nitrogen and oxygen on various types of catalysts such as noble metals, metal oxide, and ion-exchanged zeolites [2]. Co₃O₄ catalysts have been studied extensively due to their thermal stability and high activity. Especially, it has been reported that the K-doped Co₃O₄ catalysts show the high catalytic activity of the low temperature range.

Fig. 1 N₂O decomposition process

In this study, Co₃O₄-promoter catalysts (promoter/Co mole ratio=0.05) were prepared using co-precipitation and K-doped catalysts were prepared by impregnation method. The prepared catalysts were characterized with SEM, BET, XRD, XPS and H₂-TPR. The catalytic activity tests were carried out at a GHSV of 45,000 h⁻¹ and a temperature range of 250 to 375 °C. Promoter addition in Co₃O₄ catalysts showed high surface area and small size co particles. Also, the doping of K on the reduced the reduction $C_{03}O_4$ catalysts temperature rapidly and had Co²⁺ of high concentration on the catalyst surface. As a result, K-doped Co₃O₄ catalysts showed higher catalytic activity than Co₃O₄-catalysts and it was little effect of promoter for the N2O decomposition reaction.

Fig. 2 N₂O conversion performance of Kdoped Co₃O₄ catalysts catalysts

REFERENCES

 Li Xue, Changbin Zhang, Hong He, Yasutake Teraoka, Catalysis Today, 126 (2007) 449–455
Kimihiro Asano, Chie Ohnishi, Shinji Iwamoto, Yasushi Shioya, Masashi Inoue, Applied Catalysis B: Environmental, 78 (2008) 242–249