Effect of mesoporous MCo₂O₄ (M = Cu, Zn and Ni) spinel catalysts on catalytic combustion of methane

<u>Tae Hwan Lim</u>¹, Su Bin Park², Ji Man Kim², Do Heui Kim^{1,*} ¹School of Chem. and Bio. Eng., Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea ²Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do 440-746, Republic of Korea *E-mail: dohkim@snu.ac.kr (D.H. Kim)

Natural gas vehicles (NGVs) have been receiving considerable attention as effective ways to reduce emission of NOx, HCs and CO compared to diesel- and gasoline- powered vehicles. However, unburned methane emitted from NGVs has 21 times higher global warming potential than carbon dioxide so that it is regarded as a potent greenhouse gas. Thus, reducing the emission of unburned methane is necessary for expediting the use of NGVs [1].

Metal cobalt spinel oxides (MCo₂O₄; M = Cu, Ni, Zn, Mn, etc.) are obtained by the substitution of transition metal for cobalt in cobalt spinel oxide, leading to special magnetic and catalytic properties for the various industrial fields [2]. However, the previous study claimed that single metal oxide phase is formed from the thermal decomposition of MCo₂O₄ spinel phase above 400 °C; therefore, it requires the enhanced thermal stability [3]. Mesoporous metal oxides have been widely studied for various catalytic applications recently because they have special textural properties like well-defined mesopore and high surface area. In this study, we aimed at investigating the relationship between mesoporous and bulk MCo₂O₄ spinel catalysts and finding the optimized catalyst having superior catalytic performance for catalytic combustion of methane.

Mesoporous MCo₂O₄ spinel catalysts were prepared by nano-replication method using mesoporous silica KIT-6 template and the bulk ones were prepared by typical co-precipitation method. Both catalysts were applied to methane combustion reaction. N₂ adsorptiondesorption, ICP-AES, TEM, XRD, XPS and EXAFS were utilized to investigate textural and structural property of all the catalysts.

Fig. 1 indicates light-off curves of methane combustion on all the catalysts. Provided that T_{90} set as the criterion of catalytic activity for methane combustion, descending order of activity is as follows: m-CuCo₂O₄ > m-ZnCo₂O₄ > m-NiCo₂O₄ > b-NiCo₂O₄ > b-CuCo₂O₄ > b-ZnCo₂O₄. Consequently, the activity of the meso catalysts are strikingly higher than that of the bulk ones.

Based on characterization, the combined N_2 adsorption-desorption, TEM and XRD results can clarify the excellent textural property and thermal stability of the meso samples such as high BET surface area, amount of MCo_2O_4 phase [4]. Therefore, such superior properties prove that the meso spinel catalysts reveal higher catalytic activity for methane combustion than bulk counterparts.

Fig. 1 Light-off curves of methane combustion on all the catalysts.

Acknowledgements

This research was supported by C1 Gas Refinery Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (2016M3D3A1A01913252)

REFERENCES

[1] T.V. Choudhary, S. Banerjee, V.R. Choudhary, Applied Catalysis A: General 234 (2002) 1-23.

[2] M. Cabo, E. Pellicer, Journal of Materials Chemistry 20 (2010) 7021-7028.

[3] D.P. Lapham, A.C.C. Tseung, J Mater Sci 39 (2004) 251-264.

[4] T.H. Lim, D.H. Kim, Journal of Molecular Catalysis A: Chemical 426, Part A (2017) 68-74.