NIR spectroscopy for the NH₃ and NH₄⁺ species adsorbed on various zeolites

<u>Yingtong Bao</u>, Tatsuya Tsukamoto, Masaya Matsuoka and Masato Takeuchi Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan *E-mail: masato-t@chem.osakafu-u.ac.jp

Brönsted or Lewis acid sites of various zeolite have been widely characterized by NH₃-TPD, NH₃-IR, pyridine-IR and so on. However, the stretching and bending modes of NH₃ and NH₄⁺ are closely observed to those of H₂O molecule. That is, MIR spectra of the NH₃ or NH₄⁺ adsorbed on catalyst surfaces are generally measured for dehydrated samples. In contrast, NH₃, NH₄⁺, and H₂O species show different NIR absorption bands at around 5000, 4800 and 5200 cm⁻¹, respectively. This advantage makes it possible to detect NH3 or NH4⁺ species even on hydrated catalyst surfaces. From this viewpoint, we have investigated the adsorption states of NH₃ and/or NH4⁺ species on various dehydrated and hydrated zeolite surfaces.

Various cation-exchanged ZSM-5 (cations; H^+ , Na^+ , Cu^{2+} , Ni^{2+}) were used in this study. The pellet samples were placed in an in-situ IR-cell and pretreated at 723 K. NH₃ gas was then admitted into the cell, step by step. NIR spectra of NH₃ and/or NH₄⁺ adsorbed on the zeolites were recorded by using a FT-IR spectrophotometer in diffuse reflectance mode.

Figure 1 shows the NIR and MIR spectra of various ZSM-5 zeolites. H₂O, NH₃ and NH₄⁺ could be independently observed in NIR region. Figure 2 shows the NIR spectra of NH₃ and NH₄⁺ species adsorbed on various cation-exchanged ZSM-5 zeolites. When NH₃ was adsorbed on the Na⁺/ZSM-5, the NIR absorption bands were observed at 5020 and 4560 cm^{-1} (2a). These bands can be assigned to (v_3+v_4) and (v_2+v_3) combination bands of hydrogen-bonded NH₃ cluster. In the case of H⁺/ZSM-5, the NIR absorption bands were observed at 5035 and 4840 cm^{-1} (2b). These bands can be assigned to (v_3+v_4) of isolated NH₃ and (v_2+v_3) of isolated NH₄⁺ formed on the H^+ sites, respectively. Interestingly, as

the NH₃ adsorption amounts increased, these bands shifted to 5017 and 4782 cm⁻¹, because of the formation of hydrogen-bonded NH₃ and NH₄⁺ species. Furthermore, when NH₃ was adsorbed on Cu²⁺/H⁺/ZSM-5 (2c) and Ni²⁺/H⁺/ZSM-5 (2d), NH₃ molecules highly stabilized on Cu²⁺ or Ni²⁺ sites could be observed at around 4960 cm⁻¹.

Fig. 1 Near and middle IR spectra of (a) $NH_4^+/ZSM-5$ (measured in air), (b) $H^+/ZSM-5$ adsorbed with H_2O , and (c) $H^+/ZSM-5$ adsorbed with NH_3 .

Fig. 2 NIR spectra of NH₃ and/or NH₄⁺ species adsorbed on (a) Na⁺/ZSM-5, (b) H⁺/ZSM-5, (c) Cu²⁺/H⁺/ZSM-5, (d) Ni²⁺/H⁺/ZSM-5, (after degassed at 423 K), Cu²⁺, Ni²⁺: 1.0 wt% SiO₂/Al₂O₃ ratios: (a, c, d) 23.8, (b) 39.0

REFERENCES

[1] M. Takeuchi, et. al., "Investigation of NH_3 and NH_4^+ adsorbed on ZSM-5 zeolites by near and middle infrared spectroscopy", Catal. Sci. Technol., 5, 4587 (2015).