MgO-based CO₂ sorbent promoted by carbonate and nitrate salts for better sorption performances

<u>Hyeonho Joo¹</u>, Sung Jun Cho² and Kyungsu Na^{1*}

¹Department of Chemistry, ²Department of Chemical Engineering, Chonnam National University, Gwangju, Republic of Korea

*E-mail: kyungsu_na@chonnam.ac.kr

CO₂ is major greenhouse gas contributing a serious global warming problem. Fossil fuelbased power plants are emitting large amount of effluent gases containing CO₂ (conc. 10 ~ 15%) at the pre-combustion stage [1]. The most effective route for CO₂ control is capturing CO₂ from fast effluent gases by using sorbent that can capture CO₂ via either physical or chemical interactions depending on the sorbent properties [2]. The first commercialized sorbent is aqueous solutions containing amines, aqueous ammonia and alkali hydroxides [3]. Another promising sorbent is based on solid-materials, where solid sorbent should selectively capture CO₂ from effluent gases containing various gases and it can reversibly desorb CO₂ at elevated temperature for regeneration of sorbent without any damages during the repeating process of sorption-regeneration. In addition, cheap cost for mass production is also important requirement to be commercialized. Among various solid sorbents, MgO-based sorbents can capture CO₂ as the form of MgCO₃ at intermediate temperature range $(300 \sim 450^{\circ}C)$ and can be regenerated at above 450°C (normally at 500°C) [4]. It was reported that alkali metal nitrate salts could increase the sorption capacity of MgO. Double sodium salts could also allow MgO to possess high CO₂ sorption capacity with 15.4 wt% at 380°C [5].

It is widely accepted that the metal salts could make an interface with MgO, which plays a pivotal role for promoting sorption performance of MgO-based sorbents. In this MgO-based presentation. sorbents are promoted by various metal carbonate and nitrate salts, for investigation of their absorption capacity with kinetics. CO_2 absorption capacity was analyzed with thermal gravimetric analyzer, and the absorption kinetics were investigated by deriving rate constant using Linear Driving Force (LDF) model [6], with the assumption that the CO_2 sorption process followed 1st order kinetics. Effects of metal carbonate and nitrate salt types, mole ratios of Mg/carbonate/nitrate, and type of Mg precursor on the capacity and rate for CO_2 sorption were investigated comprehensively. According to the change of metal types among Li, Na, K and Ca with varying the composition of MgO/carbonate/nitrate, CO_2 absorption capacity and rate were changed dramatically [Fig. 1]. The details of the preparation of MgO-based sorbents and their evaluation as CO₂ sorbent at intermediate temperature range $(300 \sim 500^{\circ}C)$ will be addressed in this presentation.

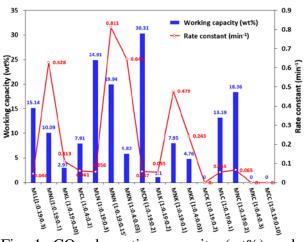


Fig. 1. CO_2 absorption capacity (wt%) and rate constant (min⁻¹) of MgO-based sorbents

REFERENCES

[1] C.I. Ahn, D.W. Jeong, J.M. Cho, H.S. Na, W.J. Jang, H.S. Roh, J.H. Choi, S.H. Um and J.W. Bae, Micropor. Mesopor. Mater., 221 (2016) 204.

[2] K.B. Lee, M.G. Beaver, H.S. Caram and S. Sircar, Ind. Eng. Chem. Res., 47 (2008) 8048.

[3] J. Blamey, E.J. Anthony, J. Wang and P.S. Fennell, Progress in Energy and Combustion Science, 36 (2010) 260.

[4] R. Philipp and K. Fujimoto, J. Phys. Chem., 96 (1992) 9035.

[5] K. Zhang, X.S. Li, Y. Duan, D.L. King, P. Singh and L. Li, Int. J. Greenhouse Gas Control, 12 (2013) 351.

[6] S.W. Rutherford and J.E. Coons, J. Colloid. Interface. Sci., 284 (2005) 432.