## A Bifunctional Cerium Phosphate Catalyst for Chemoselective Acetalization of 5-Hydroxymethylfurfural

<u>Shunsuke Kanai<sup>1</sup></u>, Ippei Nagahara<sup>1</sup>, Yusuke Kita<sup>1</sup>, Keigo Kamata<sup>1</sup>, Michikazu Hara<sup>1, 2</sup>
<sup>1</sup>Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Japan
<sup>2</sup>Advanced Low Carbon Technology Research and Development Program (ALCA), Japan Science and Technology Agency (JST), Kawaguchi, Japan
\*E-mail: hara.m.ae@m.titech.ac.jp

The acid-base properties of metal oxidebased materials have been extensively studied, and various effective simple and mixed oxide catalysts have been reported. However, difficulty in the construction of uniform electrically and structurally controlled acidbase site often leads to a problem where the fine-tuning of the catalyst structure and the reactivity are restrained. We anticipated that rare earth (RE) orthophosphates, REPO<sub>4</sub>, would be good candidates as bifunctional acidbase catalysts that can work in concert to promote electrophilicity and nucleophilicity in reactive partners. Herein, we report the highly chemoselective acetalization of 5hydroxymethlfurfural (HMF),<sup>[1]</sup> which has alcohol and aldehyde functionalities, with alcohols using a monoclinic CePO<sub>4</sub> catalyst synthesized by the hydrothermal method.

was synthesized CePO<sub>4</sub> through the hydrothermal reaction of  $Ce(NO_3)_3$ and °C, followed  $(NH_4)_2HPO_4$ at 180 by calcination at 900 °C. Figure 1 shows a scanning electron microscopy (SEM) image of CePO<sub>4</sub> with rod-like shaped particles 100-500 nm long and 20-50 nm wide.

The reaction of HMF with alcohols was examined in the presence of various catalysts that have been reported as effective for acetalization and the results are summarized in Table Three products of 5-1. (dimethoxymethyl)-2-furanmethanol (A), 5methoxymethylfurfural 2-**(B)**. and (dimethoxymethyl)-5-(methoxymethyl)furan (C) were mainly formed. Among the catalysts tested, CePO<sub>4</sub> exhibited the highest activity for the acetalization of HMF in 78% yield. Brønsted acid catalysts (*p*-toluenesulfonic acid (TsOH) and Nafion<sup>®</sup> NR50) and a Lewis acid catalyst (cerium trifluoromethanesulfonate (Ce(OTf)<sub>3</sub>)), gave complex mixture of **A**, **B** and **C**. In addition, no product was obtained with a homogeneous base catalyst of K<sub>3</sub>PO<sub>4</sub> and a metal oxide catalyst of CeO<sub>2</sub>. Thus, CePO<sub>4</sub> catalyst plays an important role in the chemoselective acetalization of HMF.

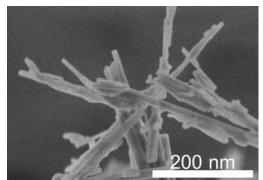



Figure 1. SEM image of CePO<sub>4</sub>.

Table 1. Effect of catalysts on the reaction of HMF with methanol.<sup>[a]</sup>

| 0                                   |           |          |    |    |
|-------------------------------------|-----------|----------|----|----|
| HO HMF                              | MeOH      | A        |    |    |
|                                     |           | В        | С  |    |
| catalyst                            | conv. / % | yield /% |    |    |
|                                     |           | Α        | B  | С  |
| $CePO_4$                            | 81        | 78       | <1 | <1 |
| TsOH <sup>[b]</sup>                 | >99       | <1       | 54 | 2  |
| Nafion <sup>®</sup><br>NR50         | 95        | 1        | 42 | 21 |
| Ce(OTf) <sub>3</sub> <sup>[b]</sup> | 74        | <1       | 27 | <1 |
| $K_3PO_4$                           | 81        | <1       | <1 | <1 |
| CeO <sub>2</sub>                    | 5         | <1       | <1 | <1 |

[a] Reaction conditions: Catalyst (0.1 g), HMF (1.0 mmol), methanol (5 mL), reflux, 1 h. Conversion and yield were determined by GC analysis. Conversion (%) = converted HMF (mol)/initial HMF (mol)  $\times$  100. Yield (%) = product (mol)/initial HMF (mol)  $\times$  100.

[b] Catalyst (0.43 mmol; i.e., equivalent to the Ce content in  $CePO_4$  (0.1 g)).

## REFERENCES

[1] A. Corma, K. S.Arias, S. I. Al-Resayes, M. J. Climent, S. Iborra, *ChemSusChem*, 6 (2013) 123.