触媒技術の動向と展望 創刊 20 周年記念企画別冊英語版 「Special Edition for the 20th Anniversary of Publication of "Annual Survey of Catalytic Science and Technologies" by the Catalysis Society of Japan」のご案内

触媒学会では1993年度から事業の一環として、「触媒技術の動向と展望」と題した年鑑の 出版を行っております。

創刊 20 周年記念号の 2012 年度版では、金属触媒、酸化物触媒、生体・錯体触媒、重合触 媒、キャラクタリゼーション、光触媒、石油化学、高分子合成、バイオベース化学の九つの 触媒分野における研究開発の歴史と将来展望をまとめた特集を掲載しております。

この特集の英語版ならびに大学・高専・国公立研究機関における研究活動(研究者総覧)の英 語版を別冊として製本し、販売いたします。

この別冊は海外の触媒研究者に日本における触媒の研究動向、研究者を紹介する際にもお 役立ていただける内容となっています。また、大学院にて触媒研究を行っている院生等にと りましても必読の書となっています。

つきましては本別冊の有用性をご賢察の上、ぜひご購入いただきますようにご案内申し上 げます。なお、5冊以上まとめてご購入いただけます場合は割引価格を準備いたしています ので事務局までお問い合わせください。

「創刊 20 周年記念企画別冊英語版」 (379 頁)価格 6,000 円(消費税込)

ご購入は、「住所、会社名及び部署名、お名前、電話番号、FAX番号、E-mailアドレス」 を明記のうえ、触媒学会事務局まで E-Mail (<u>catsj@pb3.so-net.ne.jp</u>) または FAX (03-3291-8225) にて お申し込みください。

Special Edition for the 20th Anniversary of Publication of **"Annual Survey of Catalytic Science and Technologies"** by the Catalysis Society of Japan

1. Contributions to the Special Edition

1.1 Prosperous future of catalysis: Greetings from the President

Tokyo Metropolitan UniversityMasatake Haruta31.2 A submission to the 20th anniversary commemorative edition

The Catalyst Manufacturers Association, Japan Yujiro Saito 5 1.3 The history and development of metallic catalysts

Industrial Catalyst Laboratory Takashiro Muroi 8 1.4 Complication towards evolution in the history of oxide catalysts for selective oxidation

Catalyst Research Center, Hokkaido University Wataru Ueda 18 1.5 Development of homogeneous catalysis and biocatalysis over past two decades

Chemical Resources Laboratory, Tokyo Institute of Technology Munetaka Akita 26 1.6 Recent trends in olefin polymerization catalyst development

Mitsui Chemicals Singapore R&D Center Pte.Ltd. Haruyuki Makio, Terunori Fujita 38

1.7 Past, present and future of catalyst characterization

Catalyst Research Center, Hokkaido University Kiyotaka Asakura 51 1.8 History and outlook of photocatalyst research

The University of Tokyo Kazuhiko Maeda, Kazunari Domen 60 1.9 Development of the Japanese chemical industry over past decades and prospect6s for research in the 21st century

Mitsubishi Chemical Group Science and Technology Research Center Corp.

Tohru Setoyama 72

1.10 Historical Stream, Trends and Outlook for Polymerization Catalysts

Tokyo Metropolitan University Kotohiro Nomura 80

1.11Bio-based chemicals towards green innovation

Kyoto Gakuen University Sakayu Shimizu 92

2. Recent activities of Japanese academic organizations

Aichi University of Technology107
Akita University107
Asahikawa National College of Technology
Central Research Institute of Electric Power
Industry
Chiba Institute of Technology 111
Chiba University 112
Chuo University 112
Deshishe University 117
Ehimo University 110
The University of Floatro Communications
The University of Electro-Communications
Cife University 122
Gilu University 122
Gunma University
Hakodale National College of Technology
126 Ulian seli Universita
Hirosaki University
Hiroshima University
Hokkaido University
Hokkaido University of Education
University of Hyogo 146
Ibaraki National College of Technology14/
Ichinoseki National College of Technology
International Christian University
Ishinomaki Senshu University149
Japan Advanced Institute of Science and
Technology ······150
Kagoshima University
Kanagawa University153
Kansai University156
Keio University159
Kinki University160
The University of Kitakyushu161
Kitami Institute of Technology162

Kobe University166
Kochi National College of Technology 169
Kochi University 169
Kogakuin University 170
Kyoto Institute of Technology 171
Kyoto University 172
Kyushu Institute of Technology184
Kyushu University 186
Kumamoto University 198
Meiji University 199
Meisei University 200
Mie University
University of Miyazaki 201
Muroran Institute of Technology 203
Nagaoka University of Technology 204
Nagasaki University 205
Nagoya Industrial Science Research
Institute
Nagova Institute of Technology
Nagova Municipal Industrial Research
Institute
Nagova University
Nara Institute of Science and Technology
Nara Women's University 220
National Defense Academy
National Institute of Advanced Industrial
Science and Technology
National Institutes of Natural Sciences
237
Nihon University
Numazu National College of Technology
Okavama Ceramics Research Foundation
242

Okayama University243
Oita University247
Osaka University249
Osaka Prefecture University
Research Institute of Innovative
Technology for the Earth
RIKEN273
Ritsumeikan University
Ryukoku University275
Sagami Chemical Research Institute 276
Saitama University
Seikei University
Industrial Research Center of Shiga
Prefecture ······280
Shimane Institute for Industrial Technology
Shimane University
Shinshu University
Shizuoka University
Sophia University
Tohoku University
Tokai University
INDEX

The University of Tokushima
The University of Tokyo
Tokyo Institute of Technology
Tokyo Metropolitan University
Tokyo University of Agriculture and
Technology
Tokyo University of Science
Tokyo University of Science Yamaguchi
Tottori University
University of Toyama
Toyama Industrial Technology Center ·· 336
Toyohashi University of Technology 336
Toyota Technological Institute
University of Tsukuba
Ube National Collage of Technology 341
Utsunomiya University
Waseda University
Yamaguchi University
University of Yamanashi
Yokohama National University

Special Edition of the 20th Anniversary of CATSJ survey

The history and development of metallic catalysts

Takashiro Muroi^{**}

^{**} Industrial Catalysts Laboratory, 5-8-5 Kariya, Ushiku, 300-1235 Ibaraki, Japan

1. Introduction

The fundamentals of industrial catalysts used in modern chemical and environmental processes were discovered by the middle of the 20th century. In these first-generation processes, severe reaction conditions were applied, resulting in high construction and utility costs and performance that was inferior to that found in modern chemical plants. The second generation catalysts developed in the latter half of the 20th century were more sophisticated. They not only extended the variety of usable feedstocks and products manufactured, but also reduced the consumption of material and energy inputs, thus achieving higher profitability and lower environmental emissions. These catalysts were developed primarily for continuous and commercial-scale processes, and contributed to the establishment of a modern and prosperous chemical industry. Even in ammonia synthesis, the highest pressure and high temperature process in the chemical industry, Japanese chemists discovered a Ru/Cs-based high-performance catalyst in the 1980s that can function at much lower pressure and temperature. The first commercial use of this Ru/Cs-based catalyst was by BP-KBR in 1996. Further progress and enhanced contributions from catalysts is expected moving forward in order to combat global warming and an anticipated shortage of fossil fuel resources in the near future.¹⁾

2. The history of metallic catalysts 2.1 1831-1900 (In the beginning)

Metallic catalysts were already utilized in the nascent stages of the chemical industrial revolution in the 19th century in Europe. An asbestos-supported Pt (P. Phillips, 1831) was the first catalyst that appeared in industry for the commercial production of sulfuric acid, an important material for producing sodium carbonate by the Leblanc process (N. Leblanc, 1791). The chamber process (introduced in 1746), or NO₂-catalysed SO₂ oxidation process, was gradually switched to the new catalytic process. In 1913, F. Slama and H. Wolf patented, a catalyst made of a salt of vanadic acid with alkali promotors on a porous support for this process. The V_2O_5 -alkali catalyst became popular soon after this finding, replacing all the Pt-catalysed processes. Nitric acid, another basic material in the chemical industry, was produced by acidolysis of KNO₃ with sulfuric acid when Alfred Nobel developed dynamite in 1866. The concept of vapor phase oxidation of ammonia to nitric acid was proposed by F. Kuhlmann in 1838, but the first industrial process was only developed in the 1920s, when an ample supply of gunpowder was required and the Pt gauze (multiple layers of a fine wire mesh) catalyst was invented. The activity of various finely-dispersed metallic hydrogenation catalysts was studied by Paul Sabatier, who together with Jean B. Senderens in France discovered the Ni catalyst for hydrogenation of unsaturated compounds in 1897. In the same year Joseph Crosfield & Sons succeeded in producing hardened (or hydrogenated) oil via Ni catalyzed hydrogenation of fish and vegetable oils in the UK.

2.2 1900-1960 (Rise of metallic catalysts and coal era)

Many new catalytic processes were developed during the golden era of 1900 to the 1920s. Production of nitric acid was started via catalytic oxidation of ammonia with a coil of Pt strips by Wilhelm Ostwald in 1906, and soon after with a Pt gauze catalyst developed by K Kaiser in 1909. Further, ammonia was produced via the calcium cyanamide process from calcium carbide.