口頭発表〔一般講演は講演 10分 討論 5分,依頼講演は講演 25分 討論 5分,特別講演は講演 50分 討論 10分, 実行委員会特別企画の特別講演は講演 40分 討論 5分〕

日本語	9/22	C 会 場	D 会 場	E 会 場	F 会 場	G 会 場	H 会 場	l 会 場	J 会 場	K 会 場	L 会 場
大規模の水田を取る		「光触媒」セッション	(一般研究)			「環境触媒」セッション		(一般研究)		「選択酸化」セッション	
おおけっとつと表面の記した実施にしている。	9:15	ト光触媒の水和層空間の 構造と反応性(熊本大工) 光山知宏・池上啓太・町	アルカリ土類金属 - グラファイト系水素貯蔵材料の調製と水素吸放出特性(神奈川大工) 久野広喜・	によるSF ₆ の分解(大分大 工) 高井麻実・西口宏泰・	池材料の電気伝導性に関する理論解析(東北大院工*1・東北大流体研*2・科技振さきがけ*3・東北大未来セ*1) 古山通久*1・坪井秀行*1・遠藤明*2・久保百	したVOCsの触媒分解反応 - 水蒸気の添加効果 - (産総研) 永長久寛・二タ	たシリカ触媒上でのメタ ン部分酸化反応(信州大 工) Adiya Oyun・海野謙	規則性白金マクロ多孔体 の調製法(産総研) 峯英	EDTA-USYのブレンステッド酸性質とパラフィン分解活性との相関性(鳥取大院工* ¹ ・鳥取大工* ²)鈴木克生* ¹ ・片田直伸* ² ・	る無溶媒アルコール光酸 化反応(京大院工) 大内	
の結晶高色と光規類特性 エステルの水素化反応に	9:30	る酸化チタン粉末の欠陥 吸収の評価と光触媒活性 との相関の解析(北大院地 球環境*¹・北大触セ*²) 村上直也*¹・鳥本司*¹・²・	リッド触媒によるグリセリンの水素化分解反応(筑波大数理物質) 宮澤朋久・伊藤伸一・国森公夫・	によるNF3の分解(大分大 工) 廣瀬寛・西口宏泰・永	量子分子動力学法を用いた燃料電池プロトン伝導ダイナミクスの解析(東北大院工*¹・東北大流体研*²・科技振さきがけ*³・東北大未来セ*¹) 佐々木賢治*¹・坪井秀行*¹・古山通久*¹・遠藤明*²・久保百司	熱交換機能型触媒燃焼器 によるVOC酸化処理(産 総研) 小渕存・内澤潤子・ 難波哲哉・大井明彦・中山	Mn-Fe系ペロブスカイト型酸化物膜を用いたメタン部分酸化用メンブレンリアクター(九大院総合理工) 中村竜真・下川弘宣・草場ー・佐々木一成・寺岡	を用いて作成された表面 規整 -Sb ₂ O ₄ /VSbO ₄ 触媒 の作成とその反応(北大触 セ) 中村元弘・松平宣明・ 鈴木秀士・田旺帝・朝倉清	塩を用いたY型ゼオライトのリアルミネーション (北陸先端大材料) 高橋 丈・竹島和良・近江靖則・	ン光触媒によるベンゼン のヒドロキシル化反応(名 大院工*¹・名大エコ研*²) 大竹加寿子*¹・服部忠	
(セクロムを担持した可視) ガスを念頭に入れた酸素 形成合型光触媒の調製(版 会所化炭素の水素化 大院工*・阪府大院工*・) 反応によるジメチルエー 増井洋介*・大城智史 デル直接合成(静岡大工 一部 「井山徹木・ 「本部所で) 大阪音楽・ 「大阪音楽・ 「大阪音楽	9:45	の結晶構造と光触媒特性 の関係(新潟大院*・新潟 大工* ²) 戸田健司*・山 中善臣*・佐藤弘基*・松 本貴子*・木部英敏*・堀 田憲康*・上松和義*・佐	エステルの水素化反応に 関する研究(関大院工) 谷口真一・牧野孝彦・佐野 誠・三宅孝典	ム ジルコニウム系触媒 を用いたCF₄の分解反応 (立命館大理工) 菅原義	過程の表現機能を実装した古典分子動力学計算プログラムの開発と応用(東北大院工*・東北大流体研*・科技振さきがけ*³・東北大未来セ*¹) 三浦隆治*・・坪井秀行*¹・・古山通久*¹・遠藤明*²・久保百司	各種アルミノケイ酸塩の VOC燃焼活性(弘前大理 エ* ¹ ・豊田中研* ² ・名大エ コトピア* ³) 佐藤克哉 * ¹ ・清藤昇* ¹ ・藤田悟* ² ・鈴	上でのCO-H ₂ 反応で蓄積 する表面炭素種の反応性 (神奈川大工) 岡澤至宙・ 藤井真弘・宮尾敏広・内藤	水素特異吸着(岡山大院自 * ¹ ・岡山大理* ²) 篠木春 花* ¹ ・森俊謙* ¹ ・板谷篤司	イトのAl分布(北陸先端大 材料) 金井岳英・魯保旺・	ン光触媒によるトルエン の芳香環ヒドロキシル化 反応(名大院工* ¹ ・名大エ コ研* ²) 青木正矩* ¹ ・大 竹加寿子* ¹ ・服部忠* ¹ ・伊	
(京工・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10:00	化クロムを担持した可視 光応答型光触媒の調製(阪 大院工* ¹ ・阪府大院工* ²) 増井洋介* ¹ ・大城智史 * ¹ ・安保正一* ² ・大道徹太 郎* ¹ ・片山巌* ¹ ・山下弘巳	ガスを念頭に入れた酸素 含有一酸化炭素の水素化 反応によるジメチルエー テル直接合成(静岡大工 * ¹ · 産総研* ²) 武石薫* ¹ · 荒瀬茜* ¹ · 花岡寿明* ² · 美	MgOを用いたCCl ₂ F ₂ の分解反応(産総研* ¹ ・理工学 振興会* ²) 玉井司* ¹ ・秋	Chemical Molecular Dynamics Study on the Electrochemical Reaction of Polymer Electrolyte Fuel Cell Electrode(東北大院工* ¹ ・東北大流体研* ² ・科技振さきがけ* ³ ・東北大未来セ* ⁴) 鍾慧峰* ¹ ・坪井秀行* ¹ ・古山通久* ¹ ・遠藤明* ² ・久保	ト触媒によるプラスチックの分解(室蘭工大* ¹ ・ IHI* ² ・神奈川県産総研* ³) 清野章男* ¹ ・橋本義人 * ¹ ・杉岡正敏* ¹ ・上道芳夫 * ¹ ・伊東正皓* ² ・西野順也	チレン共存下でのメタン の転化反応(東工大院総理 工) 馬場俊秀・村井一仁・ 小林弦太・越前恒雄・稲津 晃司	利用した水素製造における微量添加したPd、ZrO ₂ の効果(早大理工)浦崎浩平・市島一輝・谷本尚志・高田光子・関根泰・菊	構造を持つ新規ゼオライト触媒の調製(横浜国大院工*¹・華東師範大*²・東工大資源研*³) 林幹夫*¹・ 呉鵬*²・窪田好浩*¹・辰巳	ピレンのプロピオンアル デヒドへの選択的光酸化 反応(京大院工) 曽根崇	
10:30 休 憩 休 憩 休 憩 休 憩 休 憩 休 憩 休 憩 休 憩 休 憩	10:15	築(東工大資源研* ¹ ・東大院工* ²) 三島賢治* ¹ ・野村淳子* ¹ ・原亨和* ¹ ・辰巳	Pt/ZnO触媒のイソプタン の低温脱水素(工学院大 工) 白井隆浩・飯田肇・五	触媒を用いた有機塩素化 合物の分解(立命館大理工 * ¹ ・フィガロ技研* ²) 谷 平龍也* ¹ ・玉置純* ¹ ・河口	面構造モデルと反応系に おける新規現象に関する 理論的研究(東大院理* ¹ ・ 東大院新領域* ² ・阪大産研 * ³ ・産総研* ⁴) 谷池俊明 * ¹ ・唯美津木* ¹ ・佐々木岳 彦* ² ・森川良忠* ³ * ⁴ ・岩澤	- メソポーラスシリカ複合触媒によるポリオレフィンのケミカルリサイクル(室蘭工大) 山田友也・清野章男・杉岡正敏・上道	ブレンリアクターによる 合成ガス製造(産総研) 濱川聡・佐藤剛一・井上朋 也・水上富士夫	発研究 - 担体効果及びクエン酸添加効果の検討 - (上智大院理工*¹・上智大理工*²) 渡邉正幸*¹・原田拓海*²・船本貴子*²・瀬	よるベックマン転位反応 の活性劣化(鹿児島大工) 高橋武重・甲斐敬美・仲 西真由美	節 V ₂ O ₅ /Al ₂ O ₃ 光触媒上に おける低級アルケンの選 択的光酸化反応機構(京大 院工) 山口毅・天野史章・	
	10:30	休憩	休憩	休憩	休憩	休憩	休憩	休憩	休憩	休憩	

/22	C 会 場	D 会場	E 会 場	F 会 場	G 会 場	H 会 場	会場	J 会 場	K 会 場	L 会 場
	る金属表面修飾効果(産総研* ¹ ・東理大理工* ² ・日産自動車* ³) 佐山和弘* ¹ ・	キャラクタリゼーション (コスモ石油*¹・島根大*²) 木村洋*¹・桐山和幸*¹・ 藤川貴志*¹・久保田岳志	クロロベンゼンの水素に よる脱塩素化反応(東工大 院理工) 竹下恵理・中井 章人・大塚潔・山中一郎	面におけるNO _x 反応に関する量子分子動力学的検討(東北大院工*'・東北大	媒による硝酸イオンの選 択還元(北大院地球環境 *¹・JST*²) 吉田泰之*¹・中 村享介*¹・三上一行*²・奥	るリグニンの超臨界水ガス化反応(産総研*¹・東北	より合成した -Ga ₂ O ₃ - Al ₂ O ₃ 触媒上でのメタンに よるNOの選択的触媒還 元反応の機構解明(京大院	3J07 AFI型チタノシリケートの合成(東北大多元研) 山本勝俊·Salomon Eduardo Borjas Garcia·村 松淳司	金属酸化物のイオン交換 能と酸化触媒特性(北大触	
	た光触媒による水の分解 反応(阪大太陽エネ研セ	る分散度と水素化活性に 及ぼす調製条件の影響(埼 玉大工* ¹ ・埼玉大分析支援	用いたDMCの高効率電解 合成(東工大院理工) 船 川明恭・大塚潔・山中一郎	力学法による貴金属触媒 界面における反応ダイナ	ーを触媒にした硝酸イオンの二段法除去(北大院地球環境) 櫛引里絵・坂本	触分解反応とその応用(北 見工大工) 多田旭男	換MFI触媒におけるCH ₄ 共存下NO分解活性種の XAFSによる検討(埼玉工 大工* ¹ ・埼玉工大院工* ² ・	3J08 Preparation of Ti-rich Ti-YNU-1 and its Catalytic Properties for the Oxidation of Alkenes(東工大資源研 * ¹ ·華東師範大* ² ·横浜国 大院工* ²) Weibin Fan* ¹ · 吳鵬* ² ·窪田好浩* ³ ·辰巳 敬* ¹	of Mo-V-Te-Nb-O Catalysts during Working Temperature (CNRS* ¹ ·SPring-8* ² ·北大 触セ* ³ ·Arkema* ⁴) H. Murayama* ^{1,*2} ·D. Vitry* ³ ·	
	KTaO₃系触媒による水の 光完全分解(6) 色素の複	3D09 硫黄化合物存在下でのナフタレン水素化反応におけるPd/TiO ₂ -SiO ₂ 触媒の担体効果とキャラクタリゼーション(埼玉大工* ¹ ・埼玉大分析支援セ* ²) 戸室輝之* ¹ ・吉澤正浩* ¹ ・Shuzuan Chen* ¹ ・鈴木岳彦* ¹ ・大嶋正明* ¹ ・黒川秀樹* ² ・杉山和夫* ¹ ・三浦弘* ¹	素添加による燃料電池用 Pt系触媒の微粒子化(日立	ける表面触媒反応の理論	媒による硝酸汚染地下水		イト:試料処理法の影響 (岡山大院* ¹ ・岡山大理* ²) 田中大士* ¹ ・板谷篤司	3J09 DGC法によるアルカリ金属カチオンを含まないペンタシル型ゼオライトの合成(早大理工* ¹ ・早大理工総研* ²)稲垣怜史* ¹ ・ 澁谷弘樹* ¹ ・菊地英一* ² ・松方正彦* ²	[L]-Bi ₂ MoO ₆ のキャラクタ リゼーションとプロペン 酸化反応サイト(信州大工 * ¹ ・埼玉大工* ²) 塚本聡	
	3C10 依頼講演 ヨウ素レ ドックスを用いた 2 段階 水分解システムの構築(産 総研) 阿部竜	ZnO表面上でのエチレン		3F10 担持金属触媒における金属粒径および担体効果についての理論的研究(豊田中研)倉本圭・ 兵頭志明	た水中微量有機物のオゾ ン酸化分解反応(広島大院		NO還元活性耐SO _x 性制御 因子:H ₂ 添加と還元剤の		を用いたプロパンの部分 酸化 - CuTa ₂ O ₆ の酸化的	
45		不飽和アルデヒドの選択 的水素化反応に及ぼす担 体効果(長岡技大工) 竹	粒子触媒の調製とCOシフト活性(愛媛大工)中矢健太・佐伯和彦・山本哲也・ 山浦弘之・八尋秀典	3F11 ハイブリッド量子 分子動力学法によるイオ ン注入シミュレーション の触媒および表面改質へ の応用(東北大院工*¹・東 北大流体研*²・科技振さき がけ*³・東北大未来セ*²) 増田剛*¹・坪井秀行*¹・ 古山通久*¹・遠藤明*²・久 保百司*¹・*³・宮本明*¹・*⁴	状水銀の酸化反応(石川島 播磨重工* ¹ ・電中研* ²) 鎌田博之* ¹ ・毛利慎也* ¹ ・ 上野俊一郎* ¹ ・高野健司 * ¹ ・渡邉幸市* ¹ ・山口哲正		3111 カーボンナノチューブビーズの物性と水素吸蔵特性(筑波大院数物*'・筑波大第三工基* ²) 増満仙考* ¹ ・屋貝直也* ¹ ・中村潤児* ¹		3K11 Mn-containing MgAl- hydrotalcite: a Highly Active, Stable and Reusable Solid Catalyst for Liquid-phase Selective Oxidation of Alkylaromatics to Phenones with 1 atm of Molecular Oxygen(東工大資源研*¹・ 横浜国大院工*²) Suman K Jana*¹・窪田好浩*²・辰巳 敬*¹	
:00	昼食	昼食	昼食	昼食	昼 食	昼 食	昼 食	昼 食	昼 食	昼食

9/22	C 会 場	D 会 場	E 会 場	F 会 場	G 会 場	H 会 場	l 会 場	J 会 場	K 会 場	L 会 場
		「燃料電池関連触媒」セッション								
13:00	結晶半導体薄膜表面の光		Pd系合金ナノ粒子の調製	ける溶液構造の分子論(分 子研) 平田文男	of NO with Decane over Ag/Al ₂ O ₃ Catalysts: Influence of Agloading and Al ₂ O ₃ Support (産総研) Sultana	応 - Fe/Al ₂ O ₃ 触媒の活性 に対する第三成分の影響 - (北見工大* ¹ ・鹿島建設 * ² ・日本製鋼所* ³) 多田 旭男* ¹ ・岡崎文保* ¹ ・類家	化物を担体としたコバルト触媒によるエタノールの水蒸気改質(早大理工)石川清宏・山城庸平・福田佳恵・伊藤亜紀子・浦崎浩平・関根泰・菊地英一・	3J12 カルボン酸基を導入したハイブリッド型製をリンポーラス材料の調製に 高分子合成触媒へのに用います。 原工大資源研*¹・東工大総理工*²・産総研*³・東大院工**¹・中島清隆*¹・林院工新報*²・原亨和*¹・林郎信*³・堂免一成*⁴・辰巳敬*¹・野村淳子*¹	シルセスキオキサンゲル の調製と酸化触媒機能(京 大院工) 和田健司・渡辺	
										実行委員会特別企画「ナノスペースエレクトロキャタリシス」
13:15			3E13 液相還元法により 調製したPd系合金ナノ粒 子の特性評価(東北大多元 研*¹・三菱化学*²) 高橋 英志*¹・小西範和*¹・村松 淳司*¹・大野博信*²・高橋 和成*²		を還元剤に用いたアルミ ナ担持コバルト触媒上で のNO ₂ 選択還元反応(産総	応 - C-H結合解離過程に	を担体としたNi触媒によるメタンの水蒸気改質反応(早大理工)浦崎浩平・伊藤亜紀子・関根泰・菊地英一・松方正彦	3J13 蒸気流通法による メソポーラスシリカ薄膜 の合成(阪大院基工) 丸 尾鷹則・田中俊輔・西山憲 和・江頭靖幸・上山惟一	セトンを直接合成する新 しい触媒系の開発(大分大	物におけるナノスペース
13:30			3E14 メソポーラスカーボン担持Pd触媒の調製時におけるアルカリ添加効果(阪大太陽エネ研セ)原田隆史・宮崎麻由・池田茂・松村道雄		剤に用いたNO選択接触 還元反応 - アルミナ触媒	スメクタイト触媒を用いたメタンリフォーミング (北大院工) 岩佐信弘・滝 澤正規・荒井正彦	質のためのPd/ZnO触媒の性能におよぼす調製条件の影響(カシオ計算機* ¹ ・ 工学院大工* ²) 八幡尚	3J14 アニオン性界面活性剤を用いて合成したメソポーラスシリカの塩基触媒活性(横浜国大院工* ¹ ・東大院工* ² ・東工大資源研* ³) 山田登士* ¹ ・横井俊之* ² ・荒陽一郎* ¹ ・辰巳敬* ³ ・窪田好浩* ¹	リオキソモリブデート触媒によるメタノールの酸化反応および分解反応(近畿大理工) 寺田和代・橋本圭司・古南博・計良善也	
13:45			3E15 CeO ₂ ゾルによる噴霧Au/CeO ₂ 触媒のAu粒子構造制御(千葉大工) 田渕大輝・一國伸之・島津省吾・上松敬禧		元におけるIr/SiO ₂ 触媒へ の添加物効果(産総研)	マル改質反応用リン酸塩 担持Ni触媒の開発(2)(大 分大工) 永楽俊和・永岡	過酸化水素を用いたメタ ノールの酸化的改質(工学 院大工* ¹ ・カシオ計算機	3J15 溶媒蒸発法による AI-SBA-3の合成(早大理 エ* ¹ ・早大理工総研* ²)稲 垣怜史* ¹ ・ 長嶺典子* ¹ ・ 菊地英一* ¹ ・* ² ・松方正彦 * ¹ ・* ²	誘導体/カーボン触媒を用 $n \sim \Omega_2$ によるアルコールの部分酸化反応(東工大院	
14:00	て 担 持 し た $(Ga_{1-x}Zn_x)$ $(N_{1-x}O_x)$ 固溶体光触媒による水の完全分解反応(東大院工 *1 ・長岡技大工 *2)	分散溶液の構造解析(旭硝 子* ¹ ・岡山大工* ² ・阪大院 工* ³ ・岡山大* ⁴) 吉武優	に関する理論的研究(阪大院理* ¹ ・産総研* ²) 奥村 光隆* ¹ ・北川康隆* ¹ ・前田 泰* ² ・藤谷忠博* ² ・山口兆	ォーメート合成は表面構造に鈍感か(筑波大院数理物質* ¹ ・阪大産研* ² ・南開	COによるNO選択還元(埼 玉工大工院* ¹ ・産総研* ²)	デンの物理混合触媒によるメタンの脱水素芳香族 化反応(北見工大) 渡邊	媒を用いたDME水蒸気改質反応(産総研) 山田裕介・Thomas Mathew・上田	3J16 ゼオライトメソ多 孔体コンポジットZMM-1 の酸触媒特性(東大生研 * ¹ ・東大院工* ²) 小倉賢 * ¹ ・張毅聞* ² ・大久保達也 * ²	によるアルカンのO ₂ /H ₂ 酸化(東工大院理工) 鈴木 雄太・大塚潔・山中一郎	トから構築するナノ構造
14:15	休憩	休憩	休憩	休憩	休憩	休憩	休憩	休憩	休憩	

9/22	C 会 場	D 会 場	E 会 場	F 会 場	G 会 場	H 会 場	l 会 場	J 会 場	K 会 場	L 会 場
14:30	の調製と光触媒活性向上	分子型燃料電池における アノード触媒の開発(東工 大院理工) 酒井一泉・山	トを前駆体として調製し た担持Ni触媒によるプロ	実時間発展計算による、 フェムト秒ダイナミクス のシミュレーション(NE C) 宮本良之	の開発動向と今後の展望	水素芳香族化反応の石油	「精密表面化学とモデル触媒」セッション 3118 依頼講演 格子変位効果を用いた金属触媒作用の制御(長岡技科大工) 井上泰宣	ソ多孔体ナノ複合体による , 不飽和アルデヒド	いた芳香族化合物の直接 水酸基導入における触媒 膜調製法の影響(産総研) 佐藤剛一・濱川聡・花岡	
14:45	3C19 新規d ¹⁰ 系金属硫化物光触媒を用いた水の光分解反応(東大院工) 鈴木孝浩・寺村謙太郎・高田	ーブに内包された金属粒 子の触媒能(筑波大院数物	いた準結晶触媒粒子断面 の組織観察(東北大院工 * ¹ ・東北大多元研* ²) 田					ノールによるトルエンの	いた接触酸化による過酸 化水素合成(9)(九大院工)	3L19 特別講演 有機色素 /酸化亜鉛ナノハイブリッド薄膜の電気化学的作 製と太陽電池への応用(岐阜大院工) 箕浦秀樹
15:00	調製(物材機構) 海老名 保男·坂井伸行·馬仁志·	ム担体の熱処理温度と白 金アノード触媒活性(信州	用を用いた新規Cu触媒の 調製(東北大多元研) 亀	計算環境でのハイブリッ		zation of Methane(68) insitu Re-activation of Mo/ HZSM-5 Catalysts by a Modified Periodic Switching Treatment with Hydrogen(北	3120 赤外自由電子レーザを用いた触媒反応制御の可能性(北大触セ*・東理大赤外自由電子レーザー研究セ*²) 朝倉清高*¹・佐藤慎祐*¹・MdGolam Moula*¹・田旺帝*¹・鈴木秀士*¹・色川勝己*²・黒田晴雄*²	によるフェニルシクロへ キセンオキシド誘導体の シス選択的開環反応(東工 大資源研) 門間裕史・石	導体 / 炭素カソード上で の高濃度H ₂ O ₂ 合成(東工 大院理工)鈴木浩史・大塚	
15:15	3C21 可視光応答型Zn-Ge 系オキシナイトライドに よる水分解反応(東工大資 源研* ¹ ・東大院工* ²) 荻 巣清徳* ¹ ・辻内翔* ¹ ・野村 淳子* ¹ ・辰巳敬* ¹ ・原亨和 * ¹ ・堂免一成* ²	用いるPtRuIr/C触媒の特性(信州大繊維)松木大輔・ 土肥正敬・王佳嘉・川口知行・杉本渉・村上泰・高				香族化反応(69)水素添加 反応条件におけるMo/ HMCM-22のベンゼン合		の構造規則性がDiels- Alder反応活性に与える影響(東工大資源研) 築地	膜を用いた中性過酸化水 素水の電解合成(東工大院	
15:30	いた (オキシ)ナイトラ イド光触媒の合成と物性	Co-TPP/C 触 媒 の in-situ XAFS解析(豊田中研) 廣 嶋一崇・野中敬正・妹尾与	た二元金属内包中空シリ カナノ粒子の調製と吸着	るHeck反応に関する反応 機構の理論的検討(東北 大院工* ¹ ・東北大未来セ	のNO直接分解活性に及 ぼす添加物効果(九大院	香族化反応促進のための 触媒 - 水素吸蔵金属混合	3122 無担持銀微粉末及び 銀を逆担持した金微粉末 によるCO吸着およびCO 酸化反応活性比較(京工繊 大工芸* ¹ ・産総研* ² ・阪 院理* ³ ・首都大東京* ⁴) 秋田和宏* ¹ ・田中章康* ¹ ・ 飯塚泰雄* ¹ ・坪田年* ² ・伊 達正和* ² ・奥村光隆* ³ ・春 田正毅* ⁴	酸による糖の変換反応(北 大触セ* ¹ ・科技振* ² ・豊田 中研* ³) 福岡淳* ¹ ・パリ ッシュデーペ* ² ・稲垣伸二	休憩	3L22 特別講演 脂質ナノチューブが形成する束縛的ナノ空間とその機能(産総研) 清水敏美

9/22	C 会 場	D 会 場	E 会 場	F 会 場	G 会 場	H 会 場	l 会 場	J 会 場	K 会 場	L 会 場
									(一般研究)	
5:45	休 憩	休 憩	休 憩	休 憩	休 憩	休 憩	休 憩	休 憩	3K23 Ruddlesden-Popper型層 状ペロプスカイト LaSr ₃ Fe ₃ O ₁₀ のインターカレーション能を利用したナノ構造化(北大触セ*¹・山口産技セ*²) 片岡和義*¹・前英雄*²・定金正洋*¹・上田渉*¹	
6:00	ド光触媒TaONとヨウ素 レドックスを組み合わせ た可視光水分解システム (産総研*¹・東大院工*²) 阿部竜*¹・高田剛*²・杉原	よる耐CO被毒Pt合金電極 の電子状態解析(山梨大ク リエネ研* ¹ ・山梨大院医工 * ²) 脇坂暢* ¹ ・三井智史	したタングステン種の構 造解明(京大院工) 山添	3F24 ルテニウム(II)錯体による二酸化炭素の水素化反応の理論的研究(京大院工) 大西裕也・中尾嘉秀・佐藤啓文・榊茂好	媒におけるNO還元反応 に関する研究(京大院工 * ¹ ・北大触セ* ²) 真辺俊 介* ¹ ・松井敏明* ¹ ・菊地隆	カーボンナノチューブ合 成に対するコバルトマグ ネシア固溶体の触媒特性	Ru錯体触媒の表面設計と アルケンエポキシ化反応	孔体を利用したオゾン吸 着反応によるVOC処理	イドロタルサイト触媒を	
16:15	ウム光触媒の調製と特性 (山口大工) 川口恵亮・安 元直喜・酒多喜久・今村速 夫	マル改質反応用MgO担持 非 貴 金 属 触 媒 の 開 発 (2)(大分大工) 佐藤勝俊・	オキソ錯体固定化触媒に	on Hydrogenation of Carboxylic Anhydride to Produce Aldehyde, Catalyzed by	H ₂ -O ₂ 反応におけるNH ₃ 選 択性(産総研) 難波哲哉・	たエタンの酸化的脱水素 反応(関西大院工*・関西	ジルコニア触媒の酸塩基 特性(北見工大院工* ¹ ・北 見工大* ²)佐々野彰康* ¹ ・		3K25 モリブデン系炭化物によるメタノール水蒸気改質反応(東京農工大)武井吉仁・永井正敏	界面でのナノスペース
16:30	と光触媒活性(東大院工 *'· 産総研*²· 東理大理工 *') 東正信*'· 阿部竜*²· 佐山和弘*²· 阿部芳首*³· 堂免一成*'	る 膜 型 反 応 器 に よ る CH ₄ -O ₂ -H ₂ O反応による低 温での水素合成(九州大院	による選択的水素移行反 応(東大院工* ¹ · JST* ²) 小 池剛* ¹ · 松下光儀* ¹ · 小谷 美友紀* ² · 品地敏* ¹ · 山口	3F26 Stille反応の反応機構に関する理論的理解-クロスカップリング反応の詳細-(京大院工) 清水孝保・中尾嘉秀・佐藤啓文・榊茂好	電気化学メンブレンリア クタの適用(4)(熊本大工) 藤崎陽次・石橋功・池上	ーブ生成に対する触媒金 属形状の影響(関西大院工	媒のキャラクタリゼーションとCO酸化反応(鳥取大院工* ¹ ・鳥取大工* ²) 芳野勝彦* ¹ ・加藤和男* ¹ ・		3K26 メタンからホルム アルデヒド直接合成の再 現性(静岡大工)内藤裕章・ 上野晃史	
16:45	構造解析(東大院工*1·長 岡技大工*2) 寺村謙太郎	ト触媒による水素製造の ためのプロパン改質反応 (京大院工) 藤井皓平・岩 佐泰之・松井敏明・菊地隆	ンドリマーを触媒反応場 とする炭素 - 炭素結合形 成反応(阪大院基礎工)	析(EDA)を用いた光触媒作用の理論的研究(早大理工) 石川佳奈・倉林祐二・	応によるPt/CeO2触媒のPt 露出表面積新規評価法(京	粒子触媒の炭化水素燃焼 特性(九大院工) 堀邦朗・ 松根英樹・竹中壮・岸田昌			3K27 バナジウム触媒によるベンゼンからフェノールへの液相酸化反応(神戸大院工*・神戸大工* ² ・神戸大環境* ³) 田中千晶* ¹ ・住本進悟* ¹ ・市橋祐一* ² ・西山覚* ³ ・鶴谷滋* ²	
17:00	光触媒の表面および担持 助触媒の電子構造解析(東 理大理* ¹ ·京都工繊大* ²) 下平祥貴* ¹ ·工藤昭彦 * ¹ ·小林久芳* ²	Cu-Fe/Zn系プレート型触 媒上でのメタノール改質 における反応中間体と活 性サイト数(八戸工大院工	サイトを固体塩基触媒と する水中での効率的炭素 炭素結合形成反応(阪大 院基礎工) 海老谷幸喜・ 本倉健・森浩亮・水垣共	3F28 触媒表面における電気伝導特性評価手法の開発(東北大院工*'・東北大流体研*²・科技振さきがけ*³・東北大未来セ*')坪井秀行*'・ たいはia Arunabhiran*'・ 朱志剛*'・ 古山通久*'・ 遠藤明*²・ 久保百司*'・*³・宮本明*'・*	カイト型化合物のCO酸 化活性の検討(2)(大分大 工) 工藤久美子・高見明 秀・西口宏泰・永岡勝俊・	のヒドロホルミル化反応 におけるアルコール生成 に対するMoの添加効果		用いない周期的メソポー	3K28 湿式法によるナフタレンの酸化反応(高知大理) 鈴木陽太郎・恩田歩武・梶芳浩二・柳澤和道	

9/22	C 会 場	D 会 場	E 会 場	F 会 場	G 会 場	H 会 場	会場	J 会 場 K 会 場	L 会 場
17:15				3F29 ハイブリッド量子分子動力学法を用いたトライボケミカル反応ダイナミクスの解析(東北大院工*1・東北大流体研*2・科技振さきがけ*3・東北大未来セ*4) 早川潤*1・伊藤耕祐*1・坪井秀行*1・古山通久*1・遠藤明*2・久保百司*1・*3・宮本明*1・*4				3J29 Fイオン添加疎水性 3K29 酸化コバルト触媒 メソポーラスシリカを担体としたTiO2光触媒による水中有機物の分解(阪大院工)岡田周祐・大道徹太郎・片山巌・山下弘巳	
17:30								3J30 多孔質硫酸ジルコ ニウムによる水中ホウ素 の吸着除去(電中研) 大 山聖一・工藤聡・阿部圭 子・大隅仁	
9/23	C 会 場	D 会 場	E 会 場	F 会 場	G 会 場	H 会 場	会場	J 会 場 K 会 場	
	「光触媒」セッション	「燃料電池関連触媒」セッション	「ナノ粒子」セッション	「コンピュータ利用」 セッション	「環境触媒」セッション	「メタン関連触媒反応」セッション		「規則性多孔体の合成と機 「有機金属」セッション能」セッション	
9:15	る水とメタンからの水素 生成反応(1)(名大エコ	溶YSZアノードの接触内 部改質反応特性の検討(北 大触セ) 山本徳一・竹口	た酸化スズナノ粒子のクラスター化(九大院総理工) 吉田宏平・島ノ江憲剛・山添曻	ュレーションによる触媒 シンタリングプロセスの	御したFe-MCM-41による N ₂ O直接分解およびメタ ンによる還元反応(東学 大) 田艶・小川恵里佳・生 尾光・宍戸哲也・長谷川貞	ープ合成におけるCo-Mo 系触媒の機能と速度論(筑 波大院数物) 倪磊・中村	触媒の水素化脱硫活性に 及ぼす予備硫化温度の影響(島根大総合理工) 嘉	4J01 Improvement in Thermal Stability and Catalytic Activity of Titanium Species on Mesoporous Titanosilicates (MTS-9) by Addition of Ammonium Salts(東工大資源研*・横浜国大院工*2) Xiangju Meng*1・窪田好浩*2・辰巳敬*1	
9:30	る水とメタンからの水素 生成反応(2)(名大院工	作製方法の検討(東北大院 環境* ¹ ・東北大多元研* ²) 砂川洋二* ¹ ・山本勝俊	イバーおよびそれを鋳型に用いて合成したシリカナノチューブの断面観察(東工大院理工* ¹ ・北大触セ* ²) 荻原仁志* ¹ ・竹中壮* ¹ ・山中一郎* ¹ ・上田渉* ² ・大塚潔* ¹	基づく触媒シンタリング	笑気ガスの直接分解(京大 院工) 大西千絵・岩本伸	アルカンカップリング反 応と触媒効果(筑波大院数	触媒の水素化脱硫活性に 及ぼすリン添加効果: Co(CO) ₃ NOを用いたキャ ラクタリゼーション(島根	4J02 メソポーラスカーボンを鋳型としたチタノシリケートの合成とその触媒性能(横浜国大院工*1・華東師範大*2・東工大資源研*3) 日出真由美*1・呉鵬*2・窪田好浩*1・辰巳敬*3	
9:45	TiO ₂ (001)表面上でのギ酸 の可視光分解反応に関す る研究(東大院理* ¹ · Texas A&M* ²) 有賀寛子* ¹ · 谷	ムおよび誘導体の分子設計と固体電解質への応用 (上智大院理工* ¹ ・上智大 理工* ²) 森靖仁* ¹ ・竹岡 裕子* ² ・陸川政弘* ² ・船本	晶の新しい湿式調製法(九 大院総理工* ¹ ・Univ. of Rome"TorVergata"* ²) 渡 遠賢* ¹ ・Enrico Traversa* ² ・	慮した排気浄化触媒シミュレーション(豊田中研) 山内崇史・久保修一	けるカーボン微粒子燃焼	よるメタン転換反応(筑波 大院数物) 寺門秀晃・中	化物の構造、分散性の経 時変化(島根大総合理工)	4J03 メソポーラス酸化	
10:00	触媒を用いた光アンモニ	量体MP ₂ O ₇ 系プロトン導 電体とその応用(名大院環	LaFeO₃ペロプスカイト型 酸化物ナノ粒子の低温調 製(科学技術振興機構*¹・	上での水性ガスシフト反応の理論的研究(東京農工大工* ¹ ・東京農工大院* ²) 富永弘之* ¹ ・永井正敏* ²	触 媒 用 CeO ₂ -ZrO ₂ -Bi ₂ O ₃ / Al ₂ O ₃ の開発(阪大院工) 小薮和彦・増井敏行・今中	る新規低温メタノール合 成の速度論研究(富山大	Addition and Presulfidation Temperature on the Intrinsic Activity of Co-W and Co-Mo Sulfide Catalysts Supported on Al ₂ O ₃ for the Hydrodesulfur-	4J04 メソ細孔を反応場 4K04 三核ルテニウムク としたフェノール類の酸 化カップリング重合(東工 大資源研*¹・東工大院理工 *²・東大院工*²) 前田和 之*¹・芝崎祐二*²・原亨和 守谷誠・高尾俊郎・鈴木寛 **・堂免ー成*³・上田充*²・	

9/23	C 会	· 場	D 会 場	E 会 場	F 会 場	G 会 場	H 会 場	l 会 場	J 会 場	K 会 場
10:15	4C05 酸化チ によるピリシ 反応(名大院 コ研* ²) 田 伊藤秀章* ² ・言	ブン類の転化 エ*¹・名大エ 之上有岐*¹・		ルを用いたLa-Mn系ペロ ブスカイト型酸化物ナノ 粒子の調製(九大院総理	Enzymatic Complexes and Catalysts in Biochemical Processes (Dept. Appl. Chem.		の開発とそのFT合成への 応用(富山大工) 張イ・永 森智・椿範立	を前駆体としたMCM-41 担持Co-TiC触媒の調製と 水素化脱硫反応(千葉大	ルミノケイ酸塩へ遷移金	でのニトリルの還元反応 (東工大院理工) 川島敬 史・高尾俊郎・鈴木寛治
10:30	休	憩	休憩	休憩	休憩	休憩	休憩	休憩	休憩	休憩
						「ファインケミカルズ合成触 媒」セッション				
10:45	Coupling of I Silica-Titania (名大院工*1・	Methane over Photocatalysts ・名大エコ研 uliati*¹・伊藤	4D07 固体酸化物燃料電池の金属/酸化物界面を制御したサンプルでのメタン分解反応活性サイトの可視化(産総研) 堀田照久・岸本治夫・山地克彦・熊岳平・ManuelE.Brito・酒井夏子・横川晴美	ノ粒子の自己再生機能を 持つペロブスカイト触媒 (ダイハツ) 田中裕久	CYP3A4 in Antimigraine Drug Metabolism: DFT Studies (Dept. Appl. Chem.,	座型カルベン配位子を有するパラジウム(II)錯体を用いた高効率炭素 炭素結合生成反応(名工大院工)柳生剛義・大矢祥子・実川浩一郎	ガス適合性評価と還元挙 動に関する検討(電源開発 * ¹ ・北九州市立大* ²) 早	を鋳型とした金および銀のナノワイヤーとナノ粒子の合成と触媒特性(北大	ナノ粒子状シリカの調製 (東大院工* ¹ ・東工大資源 研* ²) 横井俊之* ¹ ・辰己	触媒を用いる新しい有機 合成(京大院工) 大嶌幸
11:00	ン光触媒によ アガスの分類 エ* ¹ ・名大エ	kるアンモニ 解(2)(名大院 コ研* ²) 森	4D08 バイオ資源-NaOH の反応による燃料電池用COフリー水素の一段合成(東工大院理工) 石田稔・竹中壮・大塚潔・山中一郎		of the Effect of Iron Spin Density on Catalyzing the Bioorganic Reactions (東北	工藤大輔·北村充·奈良坂 紘一	成ガス転換技術と触媒の 開発(富山大工) 椿範立	覆酸化スズセンサーの形 状選択性(鳥取大工* ¹ ・科 技機構さきがけ* ²) 関山	ョンを用いた新規コバル	

9/23	С	会	場		D 会	;場			E 🕏	湯		F 会 場		G 会	場		H 会 場		会場		J 会 場	K 会	場
	4C09 酸作ゼオライアセトア酸化分解が * ¹ ・トリノ人* ¹ ・オGianmario Salvatore 正一* ¹	ト光触 ルデヒ 反応(阪 ノ大*²) 木 村 高 か Ma	媒による ドの完全 府大院工 竹内雅 高 志 * ¹ ・ urtra* ² ・	ステム((20)ニッ る白金! たシク! 素反応(のため アケル 量低洞 コヘキ (北ジー	の触嫁 を中心 を触媒を サンの 触セ*¹・ (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	某研と用脱フ屋川 究すい水レ伸勝	スカイ への多 けん(ダ ー* ² ・ * ¹ ・丹:	(ト触 発展(1)配 者 は は は は は は は は は は は は は は は は は は	某のPt、 袋化還元 D微細 ^{*¹} ・キャ) ^{*¹} ・谷上西	Rhに造夕昌真ダ・ ッッ***	4F09 Computational Chemistry Study on Catalytic Site During Adenosine Triphosphate (ATP) Hydrolysis in HisP (Dept. Appl. Chem., Tohoku Univ.*¹• IFS, Tohoku Univ.*¹• JST- PRESTO*³• NICHe, Tohoku Univ.*⁴• Dev. Div., Mochidapharm. Co.*⁵• Grad. Sch. Pharm. Sci., Tohoku Univ.*⁴•) Qiang Pei*¹• Hideyuki Tsuboi*¹• Michihisa Koyama*¹• Akira Endou*²• Momoji Kubo*¹•*3• Carlos A. Del Carpio*¹• Ewa Broclawik*⁴• Kazumi Nishijima*⁴•*, Tetsuya Terasaki*⁴•*6• Akira Miyamoto*¹•*	を用ジ山和	引いたアニ ブル化反応	ソールのベ		本関連触媒」セッシ		を実現するロジウムへ ロポリ酸アンカー法の	テ確の塚	4J09 メソポーラス Fi(OH)₄におけるヒ素フッ 素イオン交換特性(九大院 工) 三角優子・松本広重・ 石原達己		
	ーマル法:	を駆使 合成と	する光触 その応用	サンデ ドライ と過熱 反応方 (東理大	カリン ドによ 夜膜型 式によ 工)	ノ系有機 こる水素 型脱水素 こる水素 程島真	機八イ 素貯 素供 素供 ・ 大 素 ・ 大 素 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	スへ性 - ² ・ カのダ - 真昌・ * ¹ ・ * ²	(ト触娩 (と)え イル興田 (大興田 (中) (本) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	某のPt、 表面 * ¹・*³) * ² ・*3) * ³ ・*1・ * ¹ ・*1・ * ² ・*1・ * ⁴ ・1・ * ⁴ ・1・	Rhとタ上谷伸慶 系活ラ西口彦一	4F10 遷移金属ポルフィリン錯体における酸化反応に関する計算化学的検討(東北大院工* ¹ ・東北大流体研* ² ・科技振さきがけ* ³ ・東北大未来セ* ⁴ ・持田製薬* ⁵) 笠原浩太* ¹ ・坪井秀行* ¹ ・古山通久* ¹ ・遠藤明* ² ・久保百司* ¹ * ³ ・Carlos A. Del Carpio* ¹ ・Ewa Broclawik* ⁴ ・西島和三* ⁴ * ⁵ ・宮本明* ¹ * ⁴	斉付た対率	†加環化反 €学活性環 ≅的合成(-	応を利用し 状化合物の	来位変崎沢み角	トサナーゼの触 同定と基質特異 (東工大院生命理	媒性型会・藤次 と一様ない は、一様など、一様など、一様など、 は、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これで	脱Se反応とCo Mo硫 物触媒の活性サイト構 『島根大総合理工) 伊 正貴・久保田岳志・岡本	化造藤	ドロタルサイトの局所構 造と反応性(熊本大工) 濱田心・池上啓太・町田正	i	
11:45				を用いた 媒の調 脱水素 * ¹ ・東理	こ製反大光勝 炭お応工男人佐 リカー	を担持 さず で 東産 * ² ・ を * ³ ・ 依 ・ * ³ ・ を も も も も も も も も も も も も も も も も も も	自金触 カリスエ 総研* ³) 高真 は 間 は は は は は は は は は は は は は は は は は	反イト側 マ・草	易とした 虫媒の記 段化活性 浅田 場ー・	: ペロフ 関製とフ E(九大阪	プスカ プロ の の の の の の の の の の の の の の の の の の	4F11 ハイブリッド量子 分子動力学法を用いた薬 分子の生体膜透過計算(東 北大院工*¹・東北大流体研 *²・科技振さきがけ*³・東 北大未来セ*⁴・持田製業 *5・東北大院薬*6) 本荘 純博*¹・坪井秀行*¹・古山 通久*¹・遠藤明*²・久保百司*¹・*3・ Carlos A. Del Carpio*¹・Ewa Broclawik*⁴・ 西島和三*⁴*⁵・寺崎哲也 *⁴*6・宮本明*¹**⁴				ルデ由来の触生藤	ィオプシス属放 -1,3-グルカナ 媒部位解析(東工 理工) 増田澄子	線菌 ・大院 ・大遠 ・大波	持Mo硫化物クラスタ 構造のホストゼオライ	- ト i	4J11 トドロカイト型マンガン酸化物 M-Mn-C (M= Mg,Co,Ni)の合成と 酸化触媒作用(高知大理 恩田歩武・原さゆり・根 芳浩二・柳澤和道		憩
12:00		昼食			昼	食			昼	食		昼食		昼	食		昼食		昼食		昼食	昼	食
									(一般	研究)											「重合触媒」セッション		
	4C12 マイポリオール 担持は 光光 * ¹ ・ *	ル法に チタン 性(石巻 東北化 ⁵ 亀山紘ス	よる白金 の合成と 専修大理 学* ²) 酒井 と* ² ・鳴海	反応にる リカ内I ! 子の触: * * * 北大	おける シャナノ 媒特! :触セ	メソ細 / 細線ナ 生(北大 * ²) 木	田孔シ トノ粒 に院理 に村潤	ン触が 活性に 影響(某のアノ こ及ぼす 北見工 野智也	レカン男 ナ水素還 大) 平	異性化 圏で 関で 関い 関い 関い 関い の 関い の の の の の の の の の の の の の		口力 Craf 院工 研一	ぱり酸に tsアシルイ	よる Friedel- 七反応(名大	- クロ 、御機 、理工	ーム c ₃ の電子移	動制 生命 倉則	NEXAFSによる表面反 の実時間追跡(東大院ヨ 近藤寛・中井郁代・	応里) 長玲	ン精密共重合のための高	クロプロピル 分子間環化付 院工) 長田	レケトン類の †加反応(阪大

9/23	C 会 場	D 会 場	E 会 場	F 会 場	G 会 場	H 会 場	l 会 場	J 会 場	K 会 場
		Cu-Fe/Zn系プレート型触 媒上でのCOシフト反応 の動力学測定(八戸工大工 * ¹ ・八戸工大院工* ² ・工学 院大工* ³) 福原長寿* ¹ ・	で置換したMFI型ゼオラ イトのペンタン異性化活 性とアルゴン吸着熱(北教 大函館* ¹ ・埼玉工大* ²)	on Influence of Dopant on the Photocatalytic Activity of Titanium Dioxide(東北大 院工*1・東北大流体研*2・	溶媒と金属触媒を用いる ビフェニル水素化反応(産 総研) 日吉範人・佐藤修・ 白井誠之	素の触媒作用を利用した 光エネルギー変換系の構			4K13 ルテニウム触媒によるヒドロシリル化反応を鍵とする(E)-および(Z)-プロモアルケンの高選択的合成(京大化研) 長尾将人・片山博之・小澤文幸
	4C14 メソポーラスシリカ上での1-ヘキセンの光メタセシス反応(名大院工*・名大エコ研*²) 坪田将典* ¹ ・薩摩篤* ¹ ・服部忠* ¹ ・吉田寿雄* ²	白金系触媒による改質ガス中のCO選択酸化(山梨大医工*¹・山梨大クリエネ研*²) 寿雅史*¹・渡辺亜	けるSO ₄ ² /ZrO ₂ 及びSO ₄ ² / ZrO ₂ -Al ₂ O ₃ を用いた軽質 直鎖パラフィンの骨格異 性化反応(上智大院理工 * ¹ ·上智大理工* ²) 中村	Ions on the Interaction of Water at Oxide-aqueous Solution Interface (Dept. Appl. Chem., Tohoku Univ.*1• IFS, Tohoku Univ.*2 • JST-PRESTO*3• NICHe, Tohoku	レンリアクターを用いた 水素利用反応の開発 - 1)過酸化水素の直接合 成(産総研* ¹ ・東北大院理 * ²) 井上朋也* ¹ ・田中佑 典 * ² ·* ¹ ・Alfredo Pacheco Tanaka* ¹ ・鈴木敏重* ¹ ・濱 川聡* ¹ ・水上富士夫* ¹		4 14 Ni(111)上にH ₂ Sの解離で生成するNi ₃ S ₃ クラスター(筑波大院数物* ¹ ・分子研* ²) 北田暁彦* ¹ ・平島秀水* ¹ ・松本健俊* ² ・山田正理* ¹ ・中村潤児* ¹		4K14 DPCB配位パラジウム触媒を用いた活性メチレン化合物とcis-2-ブテン-1,4-ジオールとの脱水縮合反応(京大化研) 村上博美・松井佑紀男・小澤文幸
	4C15 細孔径を制御した Mo/MCM-41におけるオレフィン光メタセシス反応性(千葉大工) 宮本大輔・一國伸之・島津省吾	CO選択酸化反応への第2 金属の添加効果(神奈川大	担持酸化モリブデンの固体酸性評価(北見工大) 林智之・大野智也・松田	Conductivity of Polymers Based on Quantum Chemical Molecular Dynamics (Dept. Appl. Chem., Tohoku Univ.*1•	空間におけるアクロレインの収着挙動と芳香族化合物の1,4-付加反応(東工大資源研* ¹ ・東大院総合文化* ²) 井町昌平* ¹ ・尾中篤* ²		4115 赤外発光法によるPd 単結晶上でのCO+NO反応・高温領域における生成CO ₂ 分子の振動励起状態・(筑波大数理物質) 中尾憲治・伊藤伸一・冨重 圭一・国森公夫		4K15 依頼講演 ニッケル (0)錯体上でのカルボニ ル化合物の変換(阪大院 工) 生越専介
14:00	休憩(一般研究)	化用K-Pt/Al ₂ O ₃ 触媒の構 造解析(筑波大数理物質)	4E16 ZSM-5ナノクリスタル積層触媒膜の開発とMTO反応への適用(北大院工) 多湖輝興・岩貝和幸・森田健・増田隆夫	lations of Metal Oxides: Doping Effect on Electronic Structure and Electrical	シス反応のためのメソポーラスアルミナ担持メチルトリオキソレニウム触媒系の開発(東大院総合文化) 増井洋一・尾中篤		4l16 講演中止	4J16 1 族および 2 族カチオン交換モンモリロナイトに担持したジルコノセン錯体によるエチレン重合(埼玉大工* ¹ ・埼玉大分析支援セ* ²) 高橋友和* ¹ ・黒川秀樹* ² ・大嶋正明* ¹ ・杉山和夫* ¹ ・三浦弘* ¹	
	(一般研究) 4C17 各種酸化チタン光 触媒における反応機構と 活性酸素種の挙動(長岡技 大院工) 大門利博・北澤 正広・野坂芳雄	択酸化反応に対するCu含 有触媒の触媒特性(九大院	休憩	休憩	休憩	休憩	休憩	休憩	休憩

9/23	C 会 場	D 会 場	E 会 場	F 会 場	G 会 場	H 会 場	会場	J 会 場	K 会 場
0	2 2 -20			(一般研究)			- 20		
14:30	囲気で作製した酸化チタ ン薄膜光触媒の反応性の	CO選択酸化反応における表面吸着種の同定と反応機構の考察(神奈川大工) 佐藤康司・南浦良太・	ー固体酸触媒の酸性質(鳥 取大工* ¹ ・科技機構さきが け* ²) 椿卓也* ¹ ・小坂晋	4F18 低温オゾン分解触 媒の調製とキャラクタリ ゼーション(長崎大院生産 科学* ¹ ・長崎大工* ² ・産創 研* ³) 白仁田沙代子* ¹ ・	機パラジウム触媒の製造とその機能(千葉大院薬*・東大生産研NCRC*・物材機構材料研*³)高宮郁子*・塚本史郎*・下田正彦*・有澤光弘*・濱田昌	錯体を用いるカテコール ジオキシゲナーゼ型芳香	リジン分子層の形成とベンジルアルコール類の触媒的酸素酸化反応への応用(北大理*・JSTさきがけ*2) 原賢二*・増田卓也*・河本浩志*・田山忍*・高草木達*・魚崎浩平*・	ポリプロピレンの合成(化 技戦略* ¹ ・産総研* ² ・広島 大院工* ³) 石原毅* ¹ ・ホ アンテバン* ¹ ・萩原英昭	錯体触媒によるエチレン とスチレンとの共重合に おけるアニオン性支持配
14:45	4C19 ⁶ -クロムアレーン 錯体を骨格内に含有した 有機無機ハイブリッドメ ソポーラス材料の合成と キャラクタリゼーション (阪府大院工) 酒井崇弘・ 亀川孝・松岡雅也・安保正	休 憩	ン系固体酸の触媒能(東工 大資源研* ¹ ・東大院工* ² ・ 産総研* ³) 戸田匡一* ¹ ・	孔シリカ薄膜の合成とガ ス分離特性(RITE* ¹ ・奈良 先端大* ² ・成蹊大* ³) 坂 本謙* ¹ ・余語克則* ¹ * ² ・山 田興一* ¹ * ² * ³	ポルフィリン錯体を組み 込んだ酸化触媒の合成(千 葉大工) 福島みずき・一	4H19 銅含有酸化酵素の モデル錯体によるアルカンの水酸化反応(阪市大院 理) 下川千寿・伊東忍	分子修飾TiO ₂ (110)表面に 形成されたCu種の構造解 析(JST-CREST*¹・北大触	子を有する5族遷移金属	リビング開環メタセシス 重合を利用した糖鎖置換 両親媒性機能高分子の集
		(一般研究)							
15:00	水の光分解反応(長岡技大工* ¹ · 倉敷芸術科学大産業科学技術* ²) 新井直樹* ¹ · 小林久芳* ² · 斉藤信雄	4D20 過剰H ₂ 中のCO選択酸化触媒の活性と選択性に対する添加物の影響(埼工大院工* ¹ ・埼工大工* ² ・エコデバイス* ³ ・埼工大先端研* ⁴) 庄将志* ¹ ・巨東英* ² ・杉原慎一* ³ ・田中虔一* ⁴	固体強酸の触媒活性(東工 大資源研* ¹ ・東大院工* ² ・ 産総研* ³) 岡村麻衣* ¹ ・ 戸田匡一* ¹ ・高垣敦* ¹ ・野 村淳子* ¹ ・堂免一成* ² ・辰	リグニンのガス化反応用 触媒の開発(宇都宮大院工 * ¹ ・宇都宮大工* ²) 杉戸 広和* ¹ ・古澤毅* ² ・三浦靖 智* ² ・石山泰義* ² ・佐藤正	成を指向した触媒反応プロセスの開発(味の素) 井澤邦輔	るドーパミン モノオキ シゲナーゼの構造と反応 性に関する研究(九大先導		ノン配位子を有するニッケル錯体触媒系によるエチレンとオレフィンの共重合(広島大院工) 岡田 光弘・中山祐正・塩野毅	媒を用いるイソシアナートとアルキンと一酸化炭素の新規[2+2+1]共環化反
15:15	酸化物光触媒の活性に及	COシフト反応に対する 触媒活性(東農工大) Amin Md. Zahidul・永井正 敏	カーボン系固体強酸の合成とそのキャラクタリゼーション(東工大資源研*・東大院工*・産総研* ³)高垣敦* ¹ ・野村淳子* ¹ ・	Mobility and Oxygen Storage/release Behavior		ゼによるヘムの代謝機構に関する理論的研究(九大	4121 触媒作用における酸素欠陥の働き:STMによるTiO ₂ (110)表面上のギ酸分解過程の解明(東大院理* ¹ ・阪大産研* ²) 相澤正樹* ¹ ・森川良忠* ² ・生井勝康* ¹ ・守川春雲* ¹ ・岩澤康裕* ¹	鎖分岐型ポリエチレンの合成(東ソー) 山田悟・矢野明広・佐藤守彦	
15:30	porous Pt-Loaded CdS	物触媒による水性ガスシ フト反応(東農工大) 柿 沼勉・永井正敏	た環状アミンの選択的合 成(上智大院理工* ¹ ・上智	経由する塩ビからの塩素 回収(静岡大工) 藤田昌 弘・谷口翔・東直人・上野		るフェニルアラニンヒド ロキシラーゼの構造と反	4l22 TiO ₂ (110)表面の線状酸素欠陥を利用した表面水酸基配列の形成とNC-AFM観察(三井化学)生井勝康・松岡修	するマンガン錯体の合成 とその重合挙動(住友化学	
15:45		4D23 種々のPt-Re/TiO ₂ 触 媒上での低温水性ガスシ フト反応(工学院大工) 飯田肇・染谷昌寛・近藤健 太郎・五十嵐哲					TiO ₂ (110)表面上における ギ酸触媒反応機構の解明 (東大院理* ¹ ・阪大産研* ²)	4J23 Wイミド触媒による 環状オレフィンのシンジ オ特異姓重合 結晶性シ ンジオタクチック水素化 ポリジシクロペンタジエ ンの開発(日本ゼオン) 早野重孝・角替靖男	