Ammonia synthesis over Ru-supported Ca-N-H materials

<u>Masaaki Kitano,</u>^a Yasunori Inoue,^b Masato Sasase,^b Tomofumi Tada,^a Toshiharu Yokoyama,^b Michikazu Hara,^b Hideo Hosono ^{a,b,*}

^a Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

^b Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

*Corresponding author: 81-45-924-5009, E-mail address: hosono@msl.titech.ac.jp

Abstract: Ca₂NH, which consists of Ca²⁺, N³⁻, and H⁻ ions, is formed from Ca₂N electride during ammonia synthesis and effectively promotes the cleavage of N₂ to form NH₃ on Ru catalyst although Ca₂NH is not intrinsically low work function material. The high catalytic performance of Ru/Ca₂NH is attributed to the formation of $[Ca_2N]^+ \cdot e^-_{1-x}H^-_x$ with a low work function of 2.3 eV. In addition, Ru/Ca(NH₂)₂ catalyst exhibit an extremely high activity for ammonia synthesis at low reaction temperatures. **Keywords:** Ammonia synthesis, Ruthenium, hydride.

1. Introduction

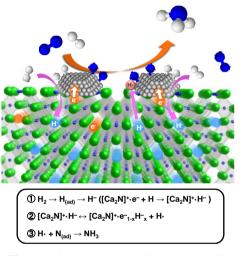
Catalytic ammonia synthesis is vital for production of fertilizer, which is needed to produce food for the world's expanding population. The rate-determining step of ammonia synthesis is cleavage of the N=N bond, because the bond energy is extremely large. In the reaction, a N₂ molecule adsorbs on surface of transition metal catalyst such as Fe and Ru by donating electrons from its bonding orbitals and accepting electrons to the antibonding π orbitals (back-donation). This back-donation produces weakening N=N bond resulting in enhancement of efficiency of cleavage of N₂. Electron donation from appropriate promoters is therefore a key to enhancing the efficiency of NH₃ synthesis using Fe or Ru-catalysts. Recently, we have found that Ru-loaded 12CaO·7Al₂O₃ electride (Ru/C12A7:e⁻) with low work function exhibits high catalytic activity for ammonia synthesis.¹ However, the activity of Ru/C12A7:e⁻ significantly decreases at low reaction temperatures (320°C), which is strongly correlated with the weak hydrogen desorption properties at low temperatures. In the present study, we report that Ca-N-H compounds such as Ca₂NH and Ca(NH₂)₂ strongly promote the cleavage of N₂ to form NH₃ on Ru nanoparticles under low temperature conditions. In addition, the effect of H⁻ ion on the ammonia synthesis activity is revealed by experimental and theoretical investigation.

2. Experimental (or Theoretical)

Ca₂N was prepared by solid-state reaction of Ca₃N₂ and Ca metal shot at 800°C for 50 h in a vacuum. Ca(NH₂)₂ was synthesized by heating a Ca metal in liquid NH₃. Ru₃(CO)₁₂ was used as a Ru precursor. XRD, FT-IR, HAADF-STEM, XPS, XAFS, Raman, H₂ and CO pulse chemisorption, N₂ adsorption-desorption were used to characterize the catalysts.

Ammonia synthesis reactions were conducted in a fixed bed flow system with an ultrapure mixture of $N_2/H_2 = 1/3$. The concentration of ammonia in the stream that left the catalyst bed (0.1 g catalyst) was monitored under steady-state conditions of temperature (400°C), gas flow rate (60 mL·min⁻¹) and pressure (0.1 MPa). The produced ammonia was trapped in 5 mM sulfuric acid solution and the amount of NH_4^+ generated in the solution was determined using ion chromatography.

3. Results and discussion


Ca₂N phase was converted completely into Ca₂NH during ammonia synthesis, when Ru-loaded Ca₂N was used as a catalyst.² Ru/Ca₂NH exhibits higher catalytic activity than Cs-Ru/MgO and Ru/C12A7:e⁻, especially below 300°C, and ammonia formation can be distinctly observed even at 200°C. The apparent

activation energy of Ru/Ca₂NH for ammonia synthesis is 60 kJ mol⁻¹, which is one-half that of Cs-Ru/MgO (120 kJ mol⁻¹). Furthermore, Ru/Ca₂NH functions as a stable catalyst for ammonia synthesis over long periods without degradation in activity. The total amount of produced ammonia for the reaction of 54 h reached 27 mmol, which is more than 25 times the total nitrogen content in Ca₂NH (1.06 mmol). This result indicates that the ammonia produced is not derived from the decomposition of the Ca₂NH support. The catalytic activity of Ru/CaNH, which consists of Ca²⁺ and NH²⁻ ions (the formal charge of hydrogen is +1) was also investigated for comparison. Although CaNH is composed of same elements as Ca₂NH, Ru/CaNH has much lower catalytic activity and a higher activation energy (110 kJ mol⁻¹) than Ru/Ca₂NH. This result clearly indicates that H⁻ ions play an important role in ammonia synthesis.

To understand the reactivity of these materials with hydrogen, H₂-TPA and TPD on the catalysts were examined. Ru/Ca₂N:e⁻ can absorb hydrogen above 150°C, which means that the hydrogen storage reaction $(H^0 + e^- \rightarrow H^-)$ takes place to form Ca₂NH. On the other hand, H₂ is released $(H^- \rightarrow H^0 + e^-)$ from Ru/Ca₂NH above 200°C. Furthermore, the onset temperature for H₂ desorption from Ru/Ca₂NH is much lower than that for Ru/CaNH (*ca.* 500°C). These results show that hydrogen incorporation and desorption reactions proceed above 200°C over Ru/Ca₂NH. It should be noted that the work function of hydrogen deficient Ca₂NH (i.e., [Ca₂N]⁺·e⁻_{1-x}H⁻_x) is determined to be 2.3 eV by DFT calculation. In addition, the DFT

calculation revealed that the hydrogen vacancy can be readily formed by the combination of Ca₂NH and Ru nanoparticles. These computational results support the idea that anionic electrons with a low WF are formed in nonstoichiometric hydrides, $[Ca_2N]^+ \cdot e^{-1}_{-x}H^-_x$, by Ru catalysts during the reaction, which facilitates N₂ cleavage on the hydride via electron donation from the anionic electrons to the loaded Ru nanoparticles. A possible reaction mechanism of ammonia synthesis over Ru/Ca₂NH is shown in Figure 1.

 $Ca(NH_2)_2$ was also demonstrated to function as efficient electronic promoter of Ru catalyst in ammonia synthesis. During ammonia synthesis, Ru nanoparticles are distinctly anchored on the surface of $Ca(NH_2)_2$ by strong Ru–N interaction, which leads to the epitaxial growth of Ru on the support surface. The high catalytic performance is due to the formation of high-density Ru nanoparticles and high electron donor ability at the Ru/Ca(NH₂)₂ interface.

Figure 1. Schematic illustration of ammonia synthesis over Ru/Ca₂NH.

4. Conclusions

Ru/Ca₂NH and Ru/Ca(NH₂)₂ exhibit much higher catalytic performance for ammonia synthesis at low temperatures than conventional Ru catalysts reported to date, including Ru/C12A7:e⁻. The formation of anionic electrons in these materials results in a small work function, which accounts for the strong electron donation ability that facilitates efficient N₂ cleavage on Ru. N adatoms on Ru preferentially react with H atoms derived from the hydride to form NH species. These reactions proceed even at ca. 200°C, so that ammonia synthesis is catalyzed above 200°C. The present results demonstrate that the strong electron-donating ability and the reversible exchangeability between H⁻ ions in the lattice and anionic electrons at low temperatures are requisite for the Ru catalyst support in low-temperature ammonia synthesis.

References

- M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S. W. Kim, M. Hara, H. Hosono, Nat. Chem. 4, (2012) 934.
- M. Kitano, Y. Inoue, H. Ishikawa, K. Yamagata, T. Nakao, T. Tada, S. Matsuishi, T. Yokoyama, M. Hara, H. Hosono, Chem. Sci. 7, (2016) 4036.