The Methane Challenge: Selective C–H bond Activation and C–C Coupling by Metal Oxides and Metal Carbides

Helmut Schwarz

Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany Fax: +49 30 314-21102, E-mail: Helmut.Schwarz@tu-berlin.de

In this lecture we will discuss a story of one molecule (methane), a few metal-oxide cationic clusters (MOCCs), dopants, metal-carbide cations, oriented-electric fields (OEFs), and a dizzying mechanistic landscape of methane activation. One mechanism corresponds to hydrogen atom transfer (HAT), which occurs whenever the MOCC possesses a localized oxyl radical (M–O[•]). If the radical is delocalized e.g., in oligometric $[MgO]_n^+$ ($n \ge 2$) the HAT barrier increases due to the penalty of radical localization. Adding a dopant (Ga₂O₃) to [MgO]₂⁺ localizes the radical and HAT transpires. Whenever the radical is located on the metal and Lewis-acidic centers are present as in [Al₂O₂]⁺⁺ the mechanism crosses-over to proton-coupled electron transfer (PCET); here the positive Al center acts as a Lewis acid that coordinates the methane molecule, while one of the bridging oxygen atoms abstracts a proton, and the emerging negatively charged CH₃ moiety relocates to the metal fragment. We provide a diagnostic plot of barriers vs. reactants-distortion energies, which allows the chemist to distinguish HAT from PCET. Thus, doping of [MgO]₂^{•+} by Al₂O₃ enables HAT and PCET to compete. Similarly, pristine [ZnO]^{•+} activates methane by PCET generating many products. Adding a CH₃CN ligand to form [(CH₃CN)ZnO]⁺⁺ leads to a single HAT product. The CH₃CN dipole acts as an OEF that switches off PCET. Diatomic $[MC]^+$ cations (M = Au, Cu) react with CH₄ by different mechanisms, dictated by the nature and strength of the M⁺–C bond. For example, Cu⁺, which bonds the carbon atom mostly electrostatically, performs coupling of C to methane to yield ethylene, in a single almost barrier-free step, with an unprecedented atomic choreography catalyzed by the OEF of Cu⁺.