Photocatalytic carbon monoxide evolution from carbon dioxide in aqueous solution by the aid of artificial photosynthesis

Tsunehiro Tanaka,^{*a, b} Huang Zeai, ^a Zheng Wang, ^a Kentaro Teramura,^{a, b} Hiroyuki Asakura,^{a, b} Saburo Hosokawa,^{a, b}

^a Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615–8510, Japan ^b Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1–30 Goryo–Ohara, Nishikyo–ku, Kyoto 615–8245, Japan

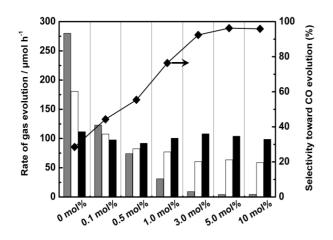
*Corresponding author: Fax number +81-75-383-2561, E-mail address: tanakat@moleng.kyoto-u.ac.jp

Abstract: Stoichiometric evolutions of CO, H_2 , and O_2 were achieved for the photocatalytic conversion of CO₂ by H_2O as an electron donor using Ag-loaded Zn-modified Ga₂O₃. The selectivity toward the evolution of CO over H_2 can be controlled by varying the addition of Zn species in the Ag-loaded Zn-modified Ga₂O₃ photocatalyst. The production of H_2 gradually decreased with increasing amounts of Zn species from 0.1 to 10.0 mol%, whereas the evolution of CO was almost unchanged. The XRD, XAFS, and XPS measurements revealed that a ZnGa₂O₄ layer was generated on the surface of Ga₂O₃ by modification with the Zn species.

Keywords: Photocatalytic conversion of CO₂; Ga₂O₃; Ca modification

1. Introduction

Reducing the emission of CO_2 has been an extensive and necessary task. Photocatalytic conversion of CO_2 into other valuable feedstocks under ambient temperature and pressure (known as Artificial Photosynthesis) has attracted significant attention as a renewable strategy to recycle CO_2 as a natural resource. Our group has previously reported a series of heterogeneous photocatalysts, such as $ZnGa_2O_4$ -modified Ga_2O_3 ,¹ $ZnGa_2O_4$,² and $Sr_2KTa_5O_{15}$ ³ with a Ag cocatalyst, which show the higher selectivity for the photocatalytic conversion of CO_2 into CO than the production of H_2 from H_2O . Here we introduce the catalytic performance of Ag/ $ZnGa_2O_4$ -modified Ga_2O_3 and the progress thereafter.


2. Experimental

 Ga_2O_3 was dispersed in an aqueous solution containing various amounts of $Zn(NO_3)_2$ by ultrasonication. After drying under vacuum at room temperature, the solid mixture of Ga_2O_3 and $Zn(NO_3)_2$ was calcined at 1223 K for 6 h. The amount of Zn species varied from 0 to 10.0 mol% of the total amount of Ga and Zn atoms.

The Zn-modified Ga₂O₃ or Ga₂O₃ photocatalyst (1.0 g) was dispersed in ultra-pure water (1.0 L) containing AgNO₃ (9.36×10^{-5} M), and CO₂ (99.999%) was bubbled into the solution at a flow rate of 30.0 mL min⁻¹ to purge the air in the reaction system. The Ag cocatalyst (1.0 wt%) was deposited on photocatalyst under UV light irradiation of a 400 W high-pressure mercury lamp for 4 h. Then NaHCO₃ (0.1 mol L⁻¹) was added to the same solution, and the suspension was irradiated under the same mercury lamp with a quartz filter connected to a cooling water system. Gaseous products such as H₂, O₂, and CO were analyzed by GC.

3. Results and discussion

Figure 1 shows the formation rates of CO, H_2 , and O_2 and selectivity toward CO evolution for the photocatalytic conversion of CO₂ by H_2O over Ag-loaded Zn-modified Ga₂O₃ with various amounts

Figure 1. Rates of CO (black), O_2 (white), and H_2 (gray) evolution and selectivity toward CO evolution in the photocatalytic conversion of CO₂ by H_2O over Ag-loaded Zn-modified Ga₂O₃ with various amounts of Zn species.

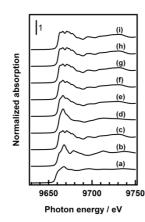


Figure 2. The Zn K-edge XANES spectra of Zn foil (a), ZnO (b), ZnGa₂O₄ (c) and Zn-modified Ga₂O₃ with different amount of Zn species: 0.1 mol% (d), 0.5 mol% (e), 1.0 mol% (f), 3.0 mol% (g), 5.0 mol% (h), and 10.0 mol% (i).

of Zn species. All photocatalysts tested could stoichiometrically produce CO, H₂, and O₂ under photoirradiation, indicating that H₂O acted as an electron donor and the number of photogenerated electrons used in the reduction of CO_2 and H^+ was similar to that of photogenerated holes consumed by the oxidation of H₂O. However, the selectivity of the generated electrons toward the reduction of CO₂ was quite different, and depended on the amount of Zn species. The formation rate of H₂ over the Ag-loaded Ga₂O₃ without the Zn species was much higher than that of CO, hence the selectivity of the generated electrons toward the reduction of CO_2 was only 28.5%. When Ga₂O₃ was modified with 0.1 mol% of Zn species, the production of H₂ was suppressed. The H₂ formation rate decreased proportionally with the increase in the amount of Zn species, and was negligible for Zn species concentrations higher than 3.0 mol%. In contrast, the formation rate of CO was not influenced by the amount of Zn species added. Eventually, the selectivity for CO evolution over Ag-loaded Zn-modified Ga₂O₃ gradually increased with elevated amounts of Zn species. When the Zn content was more than 3.0 mol%, the selectivity for CO evolution approached 100%, implying that only the reduction of CO₂ and oxidation of H₂O proceeded on the Ag-loaded Zn-modified Ga₂O₃.

To examine the role of Zn addition, environment around Zn was studied with XAFS spectroscopy. The absorption edge of Zn-

modified Ga_2O_3 samples in the Zn-K edge XANES spectra (Fig.2) are similar to those of the ZnO and ZnGa₂O₄ references, thus the chemical state of the Zn species is divalent. However, the spectrum of the sample with 0.1 mol% Zn species was quite different from those of ZnO and ZnGa₂O₄. Therefore, we speculate that the introduction of a tiny amount of Zn species by the impregnation method resulted in the isolated dispersion of Zn ions in the surface layer of Ga₂O₃ and a different local structure for the Zn species compared to that of ZnGa₂O₄. Moreover, as the amount of Zn increased, the XANES spectra became increasingly similar to that of ZnGa₂O₄, indicating that further addition of Zn ions could cause a gradual change in the local structure of the Zn species. For samples with more than 3.0 mol% of Zn species, the spectra were identical to that of ZnGa₂O₄. We conclude that ZuGa₂O₃ is covered with ZnGa₂O₄ to preventing the formation of surface proton to be reduced to H₂.

References

- 1. Y. Sakata, T. Hayashi, R. Yasunaga, N. Yanaga, H. Imamura, Chem. Commun. 51 (2015) 12938.
- 2. K. Teramura, Z. Wang, S. Hosokawa, Y. Sakata, T. Tanaka, Chem. Eur. J. 20 (2014) 9906.
- 3. Z. Wang, K. Teramura, Z. Huang, S. Hosokawa, Y. Sakata, T. Tanaka, Catal. Sci. Technol. 6 (2016), 1025.
- 4. Z. Huang, K. Teramura, S. Hosokawa, T. Tanaka, Appl. Catal. B: Environ. 199 (2016) 272.