Converting CO₂ into fuels by graphitic carbon nitride based photocatalysts

Lingxia Zhang*, Mengli Li, Min Wang, Jianlin Shi

Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, P.R. China *Lingxia Zhang: +86 21 52413122 zhlingxia@mail.sic.ac.cn

Abstract: CO_2 catalytic conversion using solar energy to high-value chemicals is a promising strategy to close the carbon cycle and a great challenge to achieve satisfying solar-to fuel conversion for practical application. Graphitic carbon nitride (g-C₃N₄) has attracted considerable attention owing to its excellent chemical and thermal stability, appealing electronic structure, and environmentally friendly features. However, its photocatalytic efficiency is still moderate because of the fast recombination of its photogenerated charge carriers and the mismatch between its band gap and solar radiation spectrum. In order to inhibit the recombination of charge carriers, we designed and synthesized g-C₃N₄ based heterostructure with other semiconductors (e.g. mesostructured m-CeO₂/g-C₃N₄, Bi₂WO₆/g-C₃N₄, 1D core-shell nanowire LaPO₄/g-C₃N₄, MnO_x/g-C₃N₄) for photocatalytic reduction of CO₂ into CO, CH₄ etc. After the combination of hetero-components, the light adsorption, conductivity, and separation of charge carriers have been greatly enhanced, thus the CO or CH₄ evolution by CO₂ reduction have been remarkably improved. And the synergetic effect between the two components in these catalyst systems played key roles in the enhancement of the photocatalytic activity of carbon nitride.

Keywords: graphitic carbon nitride, CO₂ reduction, photocatalysis.

1. Introduction

Energy shortage and air pollution caused by the use of fossil fuels are among the most serious problems we are now facing. The conversion of solar energy to chemical energy by photocatalytic CO_2 reduction to other valuable chemicals or fuels (such as CO, CH₄, HCOOH, and so on) using semiconductor materials is an increasingly important issue, which is one of the most promising methods to simultaneously solve both energy and environmental problems. Graphitic carbon nitride (g-C₃N₄) has attracted considerable attention owing to its excellent chemical and thermal stability, appealing electronic structure, and environmentally friendly features. However, its photocatalytic efficiency is still moderate because of the fast recombination of its photo-generated charge carriers and the mismatch between its band gap and solar radiation spectrum. In order to inhibit the recombination, we designed and synthesized g-C₃N₄ based heterostructure with other semiconductors (e.g. mesostructured m-CeO₂/g-C₃N₄, Bi₂WO₆/g-C₃N₄, 1D coreshell nanowire LaPO₄/g-C₃N₄, MnO_x/g-C₃N₄) for photocatalytic reduction of CO₂ into CO, CH₄ etc.

2. Experimental (or Theoretical)

Figure 1. Synthesis of mesostructured m-CeO₂/g-C₃N₄ and 1D core-shell nanowire LaPO₄/g-C₃N₄.

3. Results and discussion

Figure 2. The figure shows the schematic illustrations of the proposed mechanism in the m-CeO₂/g-C₃N₄ heterostructures: electron and hole pairs generated in g-C₃N₄ and CeO₂ under light irradiation; the electrons on the conduction band of g-C₃N₄ migrate to that of CeO₂, while the holes generated on the valence band of CeO₂ migrate to that of g-C₃N₄. At the VB of g-C₃N₄, H₂O molecules are oxidized by h^+ to generate O₂ and H^+ , meanwhile, at the VB of CeO₂, CO₂ molecules are reduced to CO and CH₄ by e- with the

Figure 3. Once irradiated by simulated sunlight, both tCN and LaPO₄ can produce electrons and holes. Because of the well-matched and overlapping band structure and the extensive interface in close contact, electrons on the CB of tCN will directly transfer to that of LaPO₄, meanwhile, holes on the VB of LaPO₄ transfer to that of tCN spontaneously. This results in an efficient space separation between h^+ and e^- , and thus reduces the probability of charge recombination. In this process, both tCN and LaPO₄ are activated. At the VB of tCN, H₂O molecules are oxidized by h^+ , generating O₂ and protons. At the same time, CO₂ molecules can be reduced to CO by e^- at the CB of LaPO₄ with the assistance of protons.

4. Conclusions

After the combination of hetero-components, the light adsorption, conductivity, and separation of charge carriers have been greatly enhanced, thus the CO or CH_4 evolution by CO_2 reduction have been remarkably improved. And the synergetic effect between the two components in these catalyst systems played key roles in the enhancement of the photocatalytic activity of carbon nitride.

References

- 1. M. Wang, M. Shen, L.X. Zhang, J.J. Tian, X.X. Jin, Y.J. Zhou, J.L. Shi, Carbon 120 (2017) 23.
- M.L. Li, L.X. Zhang, X.Q. Fan, M.Y. Wu, M. Wang, R.L. Cheng, L.L. Zhang, H.L. Yao, J.L. Shi, Appl Catal B Environ 201 (2017), 629.
- M.L. Li, L.X. Zhang, X.Q. Fan, M.Y. Wu, Y.Y. Du, M. Wang, Q.L. Kong, L.L. Zhang, J.L. Shi, Appl Catal B Envrion 190(2016) 36.
- 4. M.L. Li, L.X. Zhang, M.Y. Wu, Y.Y. Du, X.Q. Fan, M. Wang, L.L. Zhang, Q.L. Kong, J.L. Shi, Nano Energy 19 (2016) 145.