CeO₂ and CeO₂/MgO catalysts for steam and dry CH₄ reforming under the influence of high concentrations of H_2S

Kenji Taira.^{a,b*} Kenji Nakao,^a Kimihito Suzuki,^a Takeharu Sugiyama^c, Hisahiro Einaga^b

^aNippon Steel & Sumitomo Metal, 20-1 Shintomi, Futtsu, Chiba, 293-8511, Japan

^bFaculty of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka, 816-8580 Japan ^cResearch Center for Synchrotron Light Applications, Kyushu University, Fukuoka, Japan

*Corresponding author: Fax: 0439-80-2745, E-mail: taira.e84.kenji@jp.nssmc.com

Abstract: Steam and dry reforming of CH_4 is a key technology for H_2 production. In order to diversify the source of CH_4 gas for H_2 production, catalysts with tolerance against high concentrations of H_2S are necessary. We studied CeO₂ catalysts under the influence of H_2S . As a result, pure CeO₂ exhibited high and stable catalytic activity even in the presence of 2000ppm H_2S . No impurity phases containing Ce₂O₂S or coking were observed after the reaction test. In addition, CeO₂/MgO exhibited comparable activity to CeO₂ with a small amount of CeO₂. Detailed discussion will be presented in an on-site presentation using data of XAS, TPR, and DRIFT studies.

Keywords: H₂S, Steam and dry reforming, CeO₂ catalyst

1. Introduction

Steam and dry reforming of CH_4 is a key technology to industrially produce H_2 . Although conventional processes use Ni catalysts to perform the reactions, those catalysts are vulnerable to H_2S even if the concentration of H_2S is as low as 1 ppm. Therefore, it is necessary to remove H_2S from the feed CH_4 gas before subjecting it to the catalysts. In contrast, there are several industrially available CH_4 gases that contain a lot of H_2S . For example, the H_2S concentration of biogas produced by methane fermentation reaches more than 2000 ppm. A comparable concentration of H_2S is also contained in coke oven gas generated as a by-product of the steel industry. Catalysts with tolerance against such high concentrations of H_2S will diversify the source of CH_4 gas and increase the processing options to produce H_2 .

Several research groups reported that CeO_2 exhibits high catalytic activity for steam CH_4 reforming under the influence of H_2S .¹ They showed the higher catalytic activity of CeO_2 catalysts under the influence of 500ppm H_2S than with no H_2S . However, it was also reported that CeO_2 reacted with 1000ppm H_2S to form $Ce(SO_4)_2$ and Ce_2O_2S during the steam reforming reaction, which caused the deactivation of the catalysts.

Here, we performed a further study on CeO_2 catalysts for CH_4 reforming under the influence of H_2S . As a result, we found that CeO_2 of high purity exhibits high and stable catalytic activity even under the influence of 2000ppm H_2S .² In addition, CeO_2/MgO exhibited comparable activity to CeO_2 with a small amount of CeO_2 .³

2. Experimental

Pure CeO₂ (Catalysis Society of Japan, JRC-CEO-2) was heated at 800°C in air for 5 h. The calcined sample was used as the CeO₂ catalyst. CeO₂/MgO catalysts were prepared by the impregnation method. The as-achieved Mg(OH)₂ (Wako Pure Chemical, >99.9%) was decomposed to MgO at 800°C in air. The achieved MgO support was suspended in an acetone solution of Ce(NO₃)₃ 6H₂O (Kanto Kagaku, >98.5%) and dried in air. Then, the samples were dried at 110°C and calcined at 800°C for 5 h. The samples were denoted as CeO₂/MgO catalysts. The molar ratio between CeO₂ and MgO of CeO₂/MgO was 5: 95.

The catalytic activity of the catalysts was evaluated by the steam CH_4 reforming reaction $(CH_4 + H_2O \rightarrow CO + CO_2 + H_2 \text{ (not balanced)})$ and dry CH_4 reforming reaction $(CH_4 + CO_2 \rightarrow 2CO + 2H_2)$ with a flow reactor at atmospheric pressure. All of the catalysts were subjected to the reaction tests without any pretreatment. The gas composition was CH_4 : 25%, H₂O or CO_2 : 25%, and H₂S: 0-2000 ppm, with N₂

making up the balance. The total amount of gas flow was 100 cm³/min, of which the space velocity was 60,000 cm³/h.gcat. Typically, the reactions were performed at 800°C for 1–20 h. The gas composition of the outlet gas from the reactor was determined with a gas chromatograph.

3. Results and discussion

The steam and dry CH_4 reforming reaction test results of CeO_2 are shown in Fig. 1(a). The CeO_2 catalysts exhibited higher CH_4 conversion in both the steam and dry reforming in the presence of H_2S than the reaction with no H_2S . No impurities containing $Ce(SO_4)_2$ or Ce_2O_2S were observed in XRD after the reaction test. In addition, thermogravimetric analysis detected no coking after the reaction. All of the experimental results showed the high and stable catalytic activity of CeO_2 under the influence of high concentrations of H_2S . There are two points worthy of note here. The first point is that CH_4 reforming proceeded faster in the dry reforming condition than in the steam reforming condition. We deduced that CeO_2 surfaces are terminated by OH under the influence of H_2O , which would retard the breakage of the C-H bond. This hypothesis was supported by a study of the reaction rate. The steam reforming reaction rate depended on the partial pressure of H_2O at negative order. The second point is the dependence of CH_4 conversion on the concentration of H_2S . The higher the H_2S concentration, the higher the activity exhibited by the catalyst. The relationship between CH_4 conversion in the steam reforming and H_2S concentration was formulated by a Langmuir plot; therefore, we supposed that the surface with adsorbed H_2S has higher activity than a clean surface.

In order to reduce the usage of the rare earth CeO₂, we prepared CeO₂-supported catalysts with various supports. The steam and dry CH₄ reforming reaction test results of CeO₂/MgO are shown in Fig. 2. The catalytic activity of CeO₂/MgO was comparable to that of CeO₂ in spite of the large difference in the amount of CeO₂ in the catalysts. Transmission electron microscope observation showed large dispersion of CeO₂ particles even after the reaction test. This result suggests that higher dispersion of CeO₂ is one of the origins of the high catalytic activity of CeO₂/MgO.

Figure 1. Dependence of CH₄ conversion on H₂S concentration for (a) CeO₂ catalysts and (b) CeO₂/MgO

4. Conclusions

Steam and dry CH₄ reforming reaction proceeded on CeO₂ of high purity and CeO₂/MgO catalysts even in the presence of 2000ppm H₂S. The existence of H₂S accelerated the reactions in both the steam and dry reforming. The CeO₂ and CeO₂/MgO catalysts exhibited a comparable CH₄ conversion rate in spite of the large difference in CeO₂ content. Detailed discussion related to the effect of H₂S will be presented in an on-site presentation using experimental data of XAS, TPR, and DRIFT studies.

References

- 1. N. Laosiripojana, S. Charojrochkul, P. Kim-lohsoontorn and S. Assabumrungrat, J. Catal., 2010, 276, 6–15.
- 2. Japanese patent application JP2017-057485, (2017).
- 3. Japanese patent application JP2017-118796, (2017).