Catalytic Pyrolysis of Biomass by Tandem Micro-Reactor

<u>Young-Min Kim</u>,^{a,*} Atsushi Watanabe,^b Takashiro Muroi,^b Chuichi Watanabe,^b Norio Teramae,^{b,c} Heejin Lee,^d TaeUk Han,^a Seungdo Kim,^a Young-Kwon Park,^d

^aDepartment of Environmental Sciences and Biotechnology, Hallym University, Chuncheon 24252, South Korea ^bFrontier laboratories Ltd., 4-16-20, Saikon, Koriyama, Fukushima 963-8862, Japan ^cDepartment of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan ^dSchool of Environmental Engineering, University of Seoul, Seoul 02504, South Korea *Corresponding author: 82-33-242-1536, analyst@hallym.ac.kr

Abstract: Many kinds of catalytic pyrolysis reaction, such as *ex*-situ catalytic pyrolysis of *citrus* peel and *in*situ catalytic co-pyrolysis of Cork Oak with waste plastic film, were tested using a tandem micro-reactor-gas chromatography/mass spectrometry (GC/MS). The experimental results indicated that tandem micro-reactor-GC/MS can provide easy, rapid, and simple catalytic reaction test together with its product analysis in a system.

Keywords: Tandem micro-reactor-GC/MS, acid catalyst, biomass, catalytic co-pyrolysis,

1. Introduction

Tandem micro-reactor-GC/MS system is constructed with two reactors online coupled with a conventional GC/MS as shown in Fig. 1. Gas, liquid, or solid samples can be introduced into 1st reactor using a micro-syringe, micro-feeder, or inert sample cup for gas preheating, liquid vaporization, or solid pyrolysis. The product vapor emitted from 1st reactor as a results of heating or pyrolysis is transferred to 2nd reactor having catalyst bed and converted to other chemicals by the ex-catalytic reaction. If the sample and catalyst was mixed and introduced to 1st reactor, with no catalyst loading on 2nd reactor, *in*-situ catalytic reaction also can be performed. Final products are moved to GC and detected in MS after the separation in a capillary column in GC oven. In this study, two kinds of experiment using tandem micro-reactor-GC/MS system were performed to check its feasibility as an effective catalytic reaction test tool related with biomass conversion research.

Fig. 1. Schematic diagram of tandem micro-reactor-GC/MS

2. Experimental

1) Tandem micro-reactor-GC/MS

Tandem micro reactor, named "Tandem µ-reactor", (Rx-3050TR, Frontier Laboratory, Japan) interfaced to a commercial GC/MS was used for the catalytic pyrolysis reaction test.

2) Ex-situ catalytic pyrolysis of citrus peel.

2 mg of *citrus* peel in an inert sample cup was fallen into 1st reactor (500°C) and the pyrolysis vapor was upgraded in 2nd reactor (600°C) containing catalytic bed loaded with 2 mg of catalysts, HZSM-5(SiO₂/Al₂O₃: 23), HBeta(25), HY(30). Final products emitted from 2nd reactor were analyzed by GC/MS and BTEXs (benzene, toluene, ethylbenzene, and xylenes) carbon yields (C%) were quantified by external standard (ESTD) calibration methods.

3) In-situ catalytic copyrolysis of Cork Oak (COak) and waste plastic film (WPF).

1 mg of COak and WPF mixture (CO/WPF: 1/1) physically mixed with 5 mg of catalysts, HZSM-5(23), HBeta(25), or HY(30) in an inert sample cup was free fallen into 1st reactor (600°C) and the product vapor was analyzed by GC/MS and the yields (wt. %) of aromatic hydrocarbons were quantified by ESTD calibration method.

3. Results and discussion

As shown in Table 1, HZSM-5(23) produced largest amounts of BTEXs followed by HBeta(25) and HY(30) on the *ex*-situ catalytic pyrolysis of *citrus* peel due to its stronger acidity and shape selectivity for aromatics formation [1].

Table 1. Carbon yield (C%) obtained from the ex-situ catalytic pyrolysis of *citrus* peel over different catalysts.

Catalyst(SiO ₂ /Al ₂ O ₃)	HY(30)	HBeta(25)	HZSM-5(23)
Carbon Yield(C%)	1.40	4.05	4.18
	•	•	•

Theoretical and experimental yields (wt. %) of aromatic hydrocarbons obtained from the catalytic copyrolysis of COak and WPF were shown in Table 2. Compared to HBeta(25) and HY(30), HZSM-5(23) produced larger amounts of aromatic hydrocarbons from the catalytic pyrolysis of COak, WPF, and COak/WPF. Additionally, theoretical yields for aromatic hydrocarbons obtained from catalytic pyrolysis of COak/WPF over all catalysts tested in this study were higher than their theoretical yields. This indicates that synergistic formation of aromatic hydrocarbons can be achieved by adding WPF as a co-feeding material on the catalytic pyrolysis of biomass. Effective hydrocarbon pool formation and Diels-Alder reaction between the pyrolyzates of biomass and WPF can make this synergistic formation of aromatic hydrocarbons [2].

Catalyst(SiO ₂ /Al ₂ O ₃)	COak	WPF	COak/WPF	
			Theoretical ^a	Experimental
HZSM-5(23)	8.14	20.76	14.45	16.28
HBeta(25)	2.95	11.74	7.35	7.84
HY(30)	0.77	6.51	3.64	4.33

Table 2. Yields (wt%) of aromatics obtained from the catalytic pyrolysis of COak, WPF, COak/WPF.

^aCalculated with the individual yields obtained from the catalytic pyrolysis of COak and WPF over each catalyst.

4. Conclusions

Compared to HBeta(25) and HY(30), HZSM-5(23) produced large amount of aromatic hydrocarbons from both *ex*-situ catalytic pyrolysis of *citrus* peel and *in*-situ catalytic pyrolysis of COak and WPF due to the strong acidity of shape selectivity of HZSM-5(23). Synergistic aromatics formation was achieved by applying catalytic copyrolysis of COak/WPF due to the formation of efficient hydrocarbon pool.

Acknowledgement

This research is supported by the national Research Foundation Future Planning of Korea (NRFFP) funded by Korea government (No. 2017R1C1B5017885)

References

- 1. B.S. Kim, Y.M. Kim, J. Jae, C. Watanabe, S. Kim, S.C. Jung, S.C. Kim, Y.K. Park, Bioresour. Technol. 194 (2015) 312-319.
- 2. H.W. Lee, Y.M. Kim, J. Jae, J.K. Jeon, S.C. Jung, S.C. Kim, Y.K. Park, Energy Convers. Manage.129 (2016) 81-88