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Abstract: Many kinds of catalytic pyrolysis reaction, such as ex-situ catalytic pyrolysis of citrus peel and in-

situ catalytic co-pyrolysis of Cork Oak with waste plastic film, were tested using a tandem micro-reactor-gas 

chromatography/mass spectrometry (GC/MS). The experimental results indicated that tandem micro-reactor-

GC/MS can provide easy, rapid, and simple catalytic reaction test together with its product analysis in a 

system.  
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1. Introduction  

Tandem micro-reactor-GC/MS system is constructed with two reactors online coupled with a 

conventional GC/MS as shown in Fig. 1. Gas, liquid, or solid samples can be introduced into 1st reactor 

using a micro-syringe, micro-feeder, or inert sample cup for gas preheating, liquid vaporization, or solid 

pyrolysis. The product vapor emitted from 1st reactor as a results of heating or pyrolysis is transferred to 2nd 

reactor having catalyst bed and converted to other chemicals by the ex-catalytic reaction. If the sample and 

catalyst was mixed and introduced to 1st reactor, with no catalyst loading on 2nd reactor, in-situ catalytic 

reaction also can be performed. Final products are moved to GC and detected in MS after the separation in a 

capillary column in GC oven. In this study, two kinds of experiment using tandem micro-reactor-GC/MS 

system were performed to check its feasibility as an effective catalytic reaction test tool related with biomass 

conversion research. 

 

Fig. 1. Schematic diagram of tandem micro-reactor-GC/MS 
 

2. Experimental  

1) Tandem micro-reactor-GC/MS 

Tandem micro reactor, named “Tandem μ-reactor”, (Rx-3050TR, Frontier Laboratory, Japan) interfaced 

to a commercial GC/MS was used for the catalytic pyrolysis reaction test.  



2) Ex-situ catalytic pyrolysis of citrus peel.  

2 mg of citrus peel in an inert sample cup was fallen into 1st reactor (500oC) and the pyrolysis vapor was 

upgraded in 2nd reactor (600oC) containing catalytic bed loaded with 2 mg of catalysts, HZSM-5(SiO2/Al2O3: 

23), HBeta(25), HY(30). Final products emitted from 2nd reactor were analyzed by GC/MS and BTEXs 

(benzene, toluene, ethylbenzene, and xylenes) carbon yields (C%) were quantified by external standard 

(ESTD) calibration methods. 

3) In-situ catalytic copyrolysis of Cork Oak (COak) and waste plastic film (WPF). 

1 mg of COak and WPF mixture (CO/WPF: 1/1) physically mixed with 5 mg of catalysts, HZSM-5(23), 

HBeta(25), or HY(30) in an inert sample cup was free fallen into 1st reactor (600oC) and the product vapor 

was analyzed by GC/MS and the yields (wt. %) of aromatic hydrocarbons were quantified by ESTD 

calibration method.  

 

3. Results and discussion 

As shown in Table 1, HZSM-5(23) produced largest amounts of BTEXs followed by HBeta(25) and 

HY(30) on the ex-situ catalytic pyrolysis of citrus peel due to its stronger acidity and shape selectivity for 

aromatics formation [1].  
 

Table 1. Carbon yield (C%) obtained from the ex-situ catalytic pyrolysis of citrus peel over different catalysts. 

Catalyst(SiO2/Al2O3) HY(30) HBeta(25) HZSM-5(23) 

Carbon Yield(C%) 1.40 4.05 4.18 

 

Theoretical and experimental yields (wt. %) of aromatic hydrocarbons obtained from the catalytic 

copyrolysis of COak and WPF were shown in Table 2. Compared to HBeta(25) and HY(30), HZSM-5(23) 

produced larger amounts of aromatic hydrocarbons from the catalytic pyrolysis of COak, WPF, and 

COak/WPF. Additionally, theoretical yields for aromatic hydrocarbons obtained from catalytic pyrolysis of 

COak/WPF over all catalysts tested in this study were higher than their theoretical yields. This indicates that 

synergistic formation of aromatic hydrocarbons can be achieved by adding WPF as a co-feeding material on 

the catalytic pyrolysis of biomass. Effective hydrocarbon pool formation and Diels-Alder reaction between 

the pyrolyzates of biomass and WPF can make this synergistic formation of aromatic hydrocarbons [2].  
 

Table 2. Yields (wt%) of aromatics obtained from the catalytic pyrolysis of COak, WPF, COak/WPF. 

Catalyst(SiO2/Al2O3) COak WPF 
COak/WPF 

Theoreticala Experimental 

HZSM-5(23) 8.14 20.76 14.45 16.28 

HBeta(25) 2.95 11.74 7.35 7.84 

HY(30) 0.77 6.51 3.64 4.33 
aCalculated with the individual yields obtained from the catalytic pyrolysis of COak and WPF over each catalyst. 

 

4. Conclusions 

 Compared to HBeta(25) and HY(30), HZSM-5(23) produced large amount of aromatic hydrocarbons from 

both ex-situ catalytic pyrolysis of citrus peel and in-situ catalytic pyrolysis of COak and WPF due to the 

strong acidity of shape selectivity of HZSM-5(23). Synergistic aromatics formation was achieved by 

applying catalytic copyrolysis of COak/WPF due to the formation of efficient hydrocarbon pool.  
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