NO_x oxidation and storage reaction over Sr-Fe mixed oxides

<u>Kazuki TAMAI</u>,^a Saburo HOSOKAWA,^{a,b,*} Hiroyuki ASAKURA,^{a,b} Kentaro TERAMURA,^{a,b} and Tsunehiro TANAKA^{a,b}

^aDepartment of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan ^bElements Strategy Initiative for Catalysts & Batteries, Kyoto University, Kyoto, 615-8245, Japan

*Corresponding author: +81-75-383-2561, hosokawa@moleng.kyoto-u.ac.jp

Abstract: SrFeO_{3- δ} and Sr₃Fe₂O_{7- δ} perovskite catalysts were investigated as a Pt-free NO_x trapping catalyst. Sr₃Fe₂O_{7- δ} having a layered perovskite structure of a Ruddlesden-Popper-type showed higher NO_x storage capacity than SrFeO_{3- δ} due to the superior NO₂ trapping ability on the catalyst. The activity was higher than that of Pt/Ba/Al₂O₃ when the catalysts were calcined at 1273 K. Temperature-programmed reaction with NO revealed that SrFeO_{3- δ} and Sr₃Fe₂O_{7- δ} can oxidize NO to NO₂ by utilizing their lattice oxygens. Sr₃Fe₂O_{7- δ} worked as a Pt-free NO_x trapping catalyst having high NO_x storage capacity and thermal tolerance. **Keywords:** NO oxidation, NO_x trap, perovskite catalyst

1. Introduction

Nitrogen oxides (NO_x) trapping catalysts are used to remove NO_x from automobile exhaust gas in a fuel lean or cold start condition, in which catalytic reduction of NO_x to N₂ is difficult. Pt/Ba/Al₂O₃ is a typical NO_x trapping catalyst known as a NO_x storage and reduction catalyst. In a fuel lean condition, the catalyst removes NO_x by oxidizing NO to NO₂ and trapping NO_x on BaO as nitrate. However, the NO_x trapping efficiency significantly decreases below 473 K because oxidation of NO is kinetically hindered at low temperatures. Pt-based catalysts also have the problem of deactivation by sintering of Pt species at high temperatures. Then, perovskite catalysts have been recently paid attention to Pt-free NO_x trapping catalysts.¹ We have also reported that Sr₃Fe₂O_{7- δ} having a layered perovskite structure of a Ruddlesden-Popper-type shows high oxygen storage capacity (OSC) and can be used as a support of three-way catalyst.^{2,3} Therefore, this study investigated the NO_x storage capacity of SrFeO_{3- δ} and Sr₃Fe₂O_{7- δ} from the viewpoint of NO oxidation ability and NO₂ trapping ability.

2. Experimental

 $SrFeO_{3-\delta}$ and $Sr_3Fe_2O_{7-\delta}$ were synthesized by a polymerized complex method. Iron nitrate nonahydrate (Fe(NO₃)₃·9H₂O) and strontium carbonate (SrCO₃) were added into citric acid aqueous solution and stirred for 2 h at 353 K to obtain the solution containing metal oxide complexes. After ethylene glycol was added into the solution, it was stirred at 403 K for 4 h to obtain a gelatinous solution. The gel was pyrolyzed in a mantle heater at 623 K for 3 h, and thus-obtained brown powder was calcined at 1273 K for 2 h. Conventional NO_x trapping catalyst, Pt/Ba/Al₂O₃ (Pt, 1wt%; Ba, 7wt%), was synthesized by an impregnation method and calcined at 1273 K for 2 h.

NO_x storage reaction was performed in a fixed bed flow system. Catalyst was added into a quartz reactor and then pretreated at 773 K under 10% O₂/He gas flow for 1 h. After decreasing the temperature to 573 K, reaction gas (NO, 200ppm; O₂, 3%; He, balance; GHSV, 50,000 h⁻¹) was flowed at 100 mL min⁻¹. The outlet concentration of NO_x (= NO + NO₂) was measured by an on-line chemiluminescence NO_x analyzer. The reactivity of lattice oxygen in perovskite catalysts with NO was evaluated by temperature-programmed reaction (NO-TPR). The catalyst was heated (5 K min⁻¹) under 0.6% NO/He flow, and the consumption of NO was analyzed. NO₂-TPD was measured by heating (5 K min⁻¹) under He flow after saturating the sample with NO₂ at 573 K.

3. Results and discussion

Figure 1 shows the results of NO_x storage reaction at 573 K on each catalyst. In the absence of catalysts, the outlet NO_x concentration immediately reached 200ppm after introducing NO. On the other hand, when the catalysts were used, the NO_x concentration maintained 0ppm for a certain period and then gradually increased to 200ppm. These behaviors indicate that the catalysts store NO_x . Comparing with $SrFeO_{3-\delta}$ and $Pt/Ba/Al_2O_3$, $Sr_3Fe_2O_{7-\delta}$ stored NO_x for a long time even after calcining at the high temperature. Evaluating the NO_x storage capacity by using the density of trapped NO_x on the catalyst surface (Table 1), the density on perovskite catalysts were much greater than that on Pt/Ba/Al₂O₃, especially on Sr₃Fe₂O_{7-δ}. NO₂-TPD revealed $Sr_3Fe_2O_{7-\delta}$ having a layered perovskite structure showed higher NO₂ trapping ability than SrFeO_{3-δ}.

Figure 2 shows the NO-TPR profiles of $SrFeO_{3-\delta}$ and $Sr_3Fe_2O_{7-\delta}$. NO consumption was observed in both catalysts above 400 K. The consumption was mainly derived from the oxidation of NO to NO₂. The formation of NO₂ in the absence of oxygen in the feed gas indicates that NO molecules can be oxidized by lattice oxygen in the catalysts. XRD patterns of the catalysts after NO-TPR showed structure changes due to the topotactic transition, in which the original perovskite

Figure 1. Time course of the NO_x storage reaction at 573 K. (a) without catalyst, (b) SrFeO_{3- δ}, (c) Sr₃Fe₂O_{7- δ}, and (d) Pt/Ba/Al₂O₃.

Figure 2. NO-TPR profiles of (a) SrFeO_{3- δ} and (b) Sr₃Fe₂O_{7- δ}.

framework is preserved even by the release of lattice oxygen. In contrast, such NO consumption and structure change were not observed in the case of $Pt/Ba/Al_2O_3$. These results suggest that OSC of the catalysts play an important role for NO oxidation to NO₂.

4. Conclusions

SrFeO_{3- δ} and Sr₃Fe₂O_{7- δ} perovskites having OSC showed higher NO_x storage capacity than the Pt-based NO_x trapping catalyst, Pt/Ba/Al₂O₃. Sr₃Fe₂O_{7- δ} having a layered perovskite structure exhibited superior NO₂ adsorption ability to SrFeO_{3- δ} NO-TPR and XRD revealed that SrFeO_{3- δ} and

Table 1. Amount of trapped NOx on each catalyst.			
	Amount of trapped NO _x ª ∕ µmol g ^{−1}	Specific surface area / m² g⁻¹	Density of trapped NO _x ^a / molecules nm ⁻²
SrFeO _{3-δ}	9.9	1.3	4.6
$Sr_3Fe_2O_{7-\delta}$	85.9	2.8	18.5
Pt/Ba/Al ₂ O ₃	84.8	108	0.5

a) Total amount of the trapped NO_x until the outlet concentration of NO_x reached 180ppm (90% of introduced NO).

 $Sr_3Fe_2O_{7-\delta}$ can oxidized NO to NO₂ below 473 K by using the lattice oxygen.

References

- 1. C.H. Kim, G. Qi, K. Dahlberg, W. Li, Science, 327 (2010) 1624.
- 2. K. Beppu, S. Hosokawa, K. Teramura, T. Tanaka, J. Mater. Chem. A, 3 (2015) 13540.
- 3. K. Beppu, S. Hosokawa, K. Teramura, T. Tanaka, Catal. Sci. Technol., 2017, in press.