Selective Catalytic Oxidation of Ammonia over Au/Nb₂O₅ at Room Temperature

<u>Mingyue Lin,</u>^a Baoxiang An,^a Nao Niimi,^b Yohei Jikihara,^b Tsuruo Nakayama,^b Tamao Ishida,^a Masatake Haruta^a, Toru Murayama^{a,*}

^aResearch Center for Gold Chemistry, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan

^bNBC Meshtec Inc., NBC Meshtec Inc., 2-50-3 Toyoda, Hino, Tokyo, 191-0053, Japan *Corresponding author: murayama@tmu.ac.jp

Abstract: Au/Nb₂O₅ catalysts with three different Nb₂O₅ crystal structures (layered-structure-type, orthorhombic and amorphous) and gold loading amount were synthesized and evaluated for selective catalytic oxidation of NH₃. The structure of Nb₂O₅ and gold loading amount would greatly influence the catalytic activity. This study reported a 60% conversion of NH₃ with 100% selectivity to N₂ at 25°C on Au/Nb₂O₅ which is the highest activity of NH₃ oxidation at low temperatures reported to date.

Keywords: Gold catalyst, Niobium oxide, Ammonia oxidation.

1. Introduction

Ammonia is a well-known pollutant with the characteristic pungent smell which has adverse effects on human health and environment. Selective catalytic oxidation (SCO) of NH₃ with O₂ to harmless N₂, H₂O is a potentially efficient method to remove NH₃. Previous studies showed that noble metals such as Pt, Pd, Rh, Ir, Ru, Ag were active for NH₃-SCO at temperatures around 300°C but less selective to N₂ with byproducts of nitrogen oxides. Most metal oxide catalysts such as Fe₂O₃-TiO₂, V₂O₅-TiO₂, MnO₂ were found to give a good N₂ selectivity but their activities were not sufficient below 300°C. On the aspect of developing air purification system in a living environment, it is essential to develop efficient catalysts for NH₃-SCO at low temperatures. The properties of metal oxide supports and the ability of desorption of surface oxygen atoms are critically important since the formation of active atomic oxygen species is the crucial reaction step after the first step of NH₃ adsorption.

Gold catalysts are well known for their high catalytic activities in ambient air at low temperatures, especially for low-temperature oxidation of CO even at -70°C in which the active site is perimeter interface between Au and metal oxide support.¹ It has been reported that the addition of Au can lead to a significant enhancement in NH₃-SCO because Au can enhance the band intensity of imide-like adspecies. Besides, acidic metal oxides can adsorb NH₃. Therefore, acidic metal oxides supported gold catalysts are the promising candidates for realizing NH₃-SCO at low temperatures. Niobium oxides (Nb₂O₅), which is a solid acid with a low isoelectric point, is attractive as an acidic support, but it is very difficult to prepare nanoparticulate gold catalysts if the support's isoelectric point is below 5. However, our group has recently developed a method² to deposit gold nanoparticle (smaller than 3 nm in diameter) on Nb₂O₅ which will provide a new possibility for NH₃-SCO.

2. Experimental

Layered-structure-type Nb₂O₅ (Nb₂O₅-L) and orthorhombic Nb₂O₅ (Nb₂O₅-T) were synthesized by a hydrothermal method from ammonium niobium oxalate (NH₄[NbO(C₂O₄)₂(H₂O)₂]·*n*H₂O, Aldrich). Hydrothermal reaction was carried out at 175°C for 24 h. The obtained solid was filtered, washed thoroughly with deionized water and dried at 80°C overnight. The dried solid was heat-treated for 2 h at 400°C and 650°C in the air to get Nb₂O₅-L and Nb₂O₅-T, respectively. Amorphous Nb₂O₅ (Nb₂O₅-A) was provided from Catalysis Society of Japan. Nb₂O₅-A was calcined at 400°C for 2 h under air before being used as the support. Au/Nb₂O₅ catalysts were prepared by a sol immobilization method according to the previous report².

The catalytic activity measurement was carried out by using a continuous fixed-bed reactor system. The reactant gas containing 50 ppm NH_3 and 20% O_2 balanced with Ar was passed through the catalytic bed.

The amount of catalyst was 0.15 g. NH_3 conversion and N_2 selectivity were estimated at a steady state to exclude the adsorption of ammonia on the support.

3. Results and discussion

Fig.1 shows the effect of reaction temperature on NH₃ conversion over different catalysts. Nb₂O₅-L showed no catalytic activity for NH₃ oxidation even at 250°C. In contrast, the catalytic activities of Au/Nb₂O₅ for NH₃ oxidation were greatly enhanced. Table 1 summarizes the physical properties and catalytic activities of different Au/Nb₂O₅ catalysts. Au/Nb₂O₅-L showed a lower $T_{1/2}$ than Au/Nb₂O₅-T and Au/Nb₂O₅-A despite no large difference in gold loading amount of 1wt%. In previous studies, Au/Nb₂O₅-L which is a deformed orthorhombic structure with a large BET surface area has been reported to be favorable for the deposition of Au as nanoparticles and for their CO oxidation's activity based on the TOF comparison with Au/Nb₂O₅-T which is an orthorhombic structure with a small BET surface area. Moreover, the lattice oxygen species on Au/Nb₂O₅-L is good for the formation of active atomic oxygen species which may give an explanation of its high catalytic activity for NH₃ oxidation. In addition, the gold loading amount would greatly influence the catalytic activity of Au/Nb₂O₅-L for NH₃ oxidation. The catalytic activity increased with the increase of gold loading amount from 1wt% to 5wt% while the size of gold nanoparticles remaining the same. Au(5wt%)/Nb₂O₅-L showed a 60% conversion of NH₃ at 25°C which is the highest conversion of NH₃ oxidation reported yet at room temperature. This result indicated the periphery interface between gold and Nb₂O₅ may be the active sites.

Figure 1. Effects of reaction temperature on NH₃ conversion over different Nb₂O₅ supported gold catalysts. The gold loading amount is 1wt%.

Table 1. Physical properties of supported	gold catalysts and their	r catalytic activity for N	H ₃ conversion
---	--------------------------	----------------------------	---------------------------

_		• • •	11 0	· ·	•	
	Catalyst	BET (m^2/g)	Au loading (wt%) ^a	Au Particle Size (nm) ^b	<i>T</i> _{1/2} (°C) ^c	N ₂ selectivity at $T_{1/2}$ / %
	Au(1wt%)/Nb2O5-L	208	1.1	2.8 ± 0.5	149	100
	Au(3wt%)/Nb2O5-L	208	2.8	2.7 ± 0.7	81	100
	Au(5wt%)/Nb2O5-L	208	5.2	2.9 ± 0.8	16	100
	Au(7wt%)/Nb2O5-L	208	6.2	2.7 ± 0.7	28	100
	Au(1wt%)/Nb2O5-T	24	0.89	2.7 ± 0.7	154	100
	Au(1wt%)/Nb ₂ O ₅ -A	116	0.91	2.9 ± 1.6	264	65.8

^a Determined by AAS. ^b Measured by TEM. ^c Temperature for 50% NH₃ conversion.

4. Conclusions

Different kinds of Nb₂O₅ were used as supports for the preparation of Au/Nb₂O₅ catalysts. The Nb₂O₅-L was inactive for NH₃ oxidation. However, the catalytic activity was significantly enhanced by the deposition of gold nanoparticles. Moreover, the catalytic activity of Au/Nb₂O₅-L was much higher than other two kinds of Nb₂O₅ supported gold catalysts because of its large surface area and surface's lattice oxygen species. The effect of gold loading amount on the catalytic activity of Au/Nb₂O₅-L indicated that the periphery interface between gold and Nb₂O₅-L may be the active sites for NH₃ oxidation.

References

- 1. M. Haruta, T. Kobayashi, H. Sano H, N. Yamada. Chem. Lett. 16 (1987) 405.
- 2. T. Murayama, W. Ueda, M. Haruta, ChemCatChem 8 (2016) 2620.