High catalytic activity of isolated Pt atoms of Ni-Pt alloy for CO₂ hydrogenation

<u>Soichi KIKKAWA</u>^a, Kentaro TERAMURA^{a, b, *}, Hiroyuki ASAKURA^{a, b}, Saburo HOSOKAWA^{a, b}, Tsunehiro TANAKA^{a, b, *}

^a Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

^b Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan

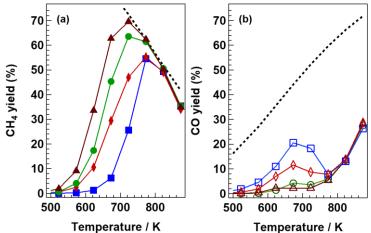
*Corresponding author: teramura@moleng.kyoto-u.ac.jp and tanakat@moleng.kyoto-u.ac.jp

Abstract: Tiny amount of Pt was added into Ni/Al₂O₃, resulting in a unique structure with isolated Pt atoms surrounded by Ni atoms. Ni-Pt/Al₂O₃ exhibited higher activity for CH₄ formation than bare Ni/Al₂O₃ in CO₂ hydrogenation, although only CO was evolved on bare Pt/Al₂O₃. The FT-IR spectroscopy using CO as a probe revealed that isolated Pt atoms were negatively charged by the electron donation from surrounding Ni atoms. These surface isolated Pt atoms caused the higher TOF of CH₄ than bare Ni/Al₂O₃.

Keywords: alloy catalyst, isolated Pt species, CO₂ hydrogenation, CO adsorption

1. Introduction

Alloy catalysts have been known to exhibit unique properties which are different from the catalytic behavior of their monometallic catalysts, while the reaction mechanisms on the alloy catalysts have not been elucidated fully yet ^[1]. Ni/Al₂O₃ and Pt/Al₂O₃ catalysts show high activities for CH₄ and CO formations in CO₂ hydrogenation, respectively ^[2]. It is expected that the alloy catalysts based on Ni and Pt have a unique geometric and electronic structure, resulting in different selectivity from that on each monometallic catalyst because of the unique adsorption properties of intermediate species in CO₂ hydrogenation. To investigate the catalytic behavior of alloy catalysts, we studied CO₂ hydrogenation over Ni-Pt alloy catalysts supported on Al₂O₃ with various composition ratios of Ni/Pt.


2. Experimental

Ni-Pt alloys were prepared on a γ -Al₂O₃ powder (Catalysis Society of Japan, JRC-ALO-7) by an impregnation method using Ni(NO)₃ and Pt(NO₂)₂(NH₃)₂ as precursors. The loading amount of Ni and Pt were 1.0 mmol g_{cat}⁻¹ with various molar ratios (Ni:Pt = 100:0, 95:5, 75:25, 50:50, 25:75, and 0:100). After the impregnation, the catalysts were calcined at 773 K for 5 h, and then grained and sieved to 25~50 mesh. 100 mg of catalysts were pretreated at 1173 K for 1 h under 5 % of H₂ flowing at a rate of 50 mL min⁻¹. CO₂ hydrogenation was carried out in a fixed bed flow reactor at ambient pressure. The catalytic activity test at elevated temperature was performed in the 50 mL min⁻¹ of mixture gas flow containing 10 % of CO₂ and 40 % of H₂ in He balance. FT-IR spectra of Ni-Pt/Al₂O₃ under 0.08 Torr of CO at 303 K were recorded after in-situ H₂ pretreatment at 873 K for 1h.

3. Results and discussion

The metallic Ni and Pt peaks appeared in the XRD patterns of reduced Ni/Al₂O₃ and Pt/Al₂O₃ samples, respectively. In the case of Ni-Pt/Al₂O₃, the metallic Ni peaks gradually shifted to low angle with increasing molar ratio of Pt. The lattice parameters estimated from the peak positions followed Vegard's law, suggesting that the solid solution of Ni-Pt alloy was formed. **Figure 1** shows the yields of CH₄ and CO in the CO₂ hydrogenation. Ni/Al₂O₃ catalyst exhibited the activity for CH₄ formation mainly at less than 673 K, while CO was generated as a main product over Pt/Al₂O₃. At more than 773 K, the CH₄ formation over Ni/Al₂O₃ was suppressed by reaching the equilibrium. Ni-Pt/Al₂O₃ containing 5 mol% of Pt (hereinafter, Ni₉₅Pt₅/Al₂O₃) showed higher yield of CH₄ than Ni/Al₂O₃ with keeping the high selectivity toward CH₄ evolution (ca. 97 % at 523 K). Ni₇₅Pt₂₅/Al₂O₃, which contained the higher molar ratio of Pt than

Ni₉₅Pt₅/Al₂O₃, showed the lower yield of CH₄ than Ni/Al₂O₃. In contrast, much higher amount of CO was evolved over Ni₇₅Pt₂₅/Al₂O₃ than that over Ni/Al₂O₃ and Ni₉₅Pt₅/Al₂O₃, resulting in the low selectivity toward CH₄ evolution (ca. 50 % at 523 K). Figure 2 shows the FT-IR spectra of Ni-Pt/Al₂O₃ under 0.08 Torr of CO as a probe at 303 K. The weak bands appeared at 2057 cm⁻¹ and 1970 cm⁻¹ in the FT-IR spectra of Ni/Al₂O₃, which were assigned to v(CO) stretching mode of linear-CO and bridge-CO species on metallic Ni, respectively. Pt/Al₂O₃ showed a strong band at 2090 cm⁻¹ and weak band at 1850 cm⁻¹. In the case of Ni-Pt/Al₂O₃, a strong band was observed

Figure 1 Yield of (a) CH₄ and (b) CO for CO₂ hydrogenation over Ni-Pt/Al₂O₃. Closed and open circles: Ni/Al₂O₃, triangles: Ni₉₅Pt₅/Al₂O₃, rhombus: Ni₇₅Pt₂₅/Al₂O₃, squares: Pt/Al₂O₃.Dashed line is equilibrium conversion of each reaction. $m_{\text{catalyst}} = 100 \text{ mg}$, 10 % CO₂ and 40 % H₂ in He (total flow rate = 50 mL min⁻¹).

between the bands of linear-CO on Ni/Al₂O₃ and Pt/Al₂O₃ (Ni₉₅Pt₅/Al₂O₃: 2079 cm⁻¹, Ni₇₅Pt₂₅/Al₂O₃: 2082 cm⁻¹). These strong bands were assigned to v(CO) stretching mode of linear-CO on metallic Pt because of the similar desorption property as Pt/Al₂O₃. The peak shift to low frequency in the spectra of Ni-Pt/Al₂O₃ than that of Pt/Al₂O₃ suggested that Pt atoms of Ni-Pt alloy were negatively charged by electron donation from Ni atoms, which was consistent with the XANES results. The absorption edge of Pt L_{III}-edge XANES spectra gradually shifted to high energy with increasing molar ratio of Ni because of high electron density of 5d orbital of Pt. Additionally, these EXAFS spectra of Ni₉₅Pt₅/Al₂O₃ suggested that Pt atoms were surrounded by Ni atoms. The average particle size of $Ni_{95}Pt_5/Al_2O_3$ catalyst (d = 9 nm) was smaller than that of Ni/Al_2O_3 catalyst (d = 27 nm) from TEM images. The turnover frequency (TOF) of CH₄, namely, the number of moles of CH₄ by the moles of surface metal atoms by seconds $(1.9 \times 10^{-7} \text{ s}^{-1})$ over Ni₉₅Pt₅/Al₂O₃ was higher than that over Ni/Al₂O₃ (1.3×10⁻⁷ s⁻¹). It is suggested that the surface isolated Pt species contributes to improve the TOF of CH₄.

(in c) x4 state of the state o

Figure 2 FT-IR spectra of Ni-Pt/Al₂O₃ under 0.08 Torr of CO. In order from the bottom to the top, the spectra of Ni/Al₂O₃, Ni₉₅Pt₅/Al₂O₃, Ni₇₅Pt₂₅/Al₂O₃ and Pt/Al₂O₃ are shown.

4. Conclusions

 $Ni_{95}Pt_5/Al_2O_3$ exhibited the higher activity for the CH₄ formation than Ni/Al₂O₃ in the CO₂ hydrogenation. In contrast, the CO yield over $Ni_{95}Pt_5/Al_2O_3$ was as low as that over Ni/Al_2O_3 , although only CO was generated on bare Pt/Al_2O_3 . FT-IR and XAFS spectra revealed that isolated Pt atoms were formed on the surface of $Ni_{95}Pt_5/Al_2O_3$ with electron donation from surrounding Ni atoms to Pt atoms. We concluded that the unique surface structure of Ni-Pt alloy that isolated Pt atom surrounded by Ni atoms, caused the high TOF of CH₄ as compared to Ni/Al₂O₃.

References

- 1. Z. Wei, J. Sun, Y. Li, A. K. Datye, Y. Wang, Chem. Soc. Rev., 2012, 41, 7994.
- 2. W. Wang, S. Wang, X. Ma, J. Gong, Chem. Soc. Rev., 2011, 40, 3703.