Nanostructured catalysts for carbon dioxide conversion

Zhou-jun Wang^{a,b,*} Yu Guo^a, Jinwei Sun^a

^aState Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P.R. China ^bInternational Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan *Corresponding author: Fax number: +86 10 64437983, E-mail address: wangzj@mail.buct.edu.cn

Abstract: CO_2 reforming of methane into syngas and CO_2 hydrogenation into methane are two of most promising technologies in CO_2 conversion. Ni catalysts are most widely investigated candidates in both technologies. The prime bottleneck of Ni catalysts lies in rapid deactivation due to carbon deposition and/or metal sintering. Herein, several nanostructured Ni catalysts, such as nanoconfined and nanocomposite Ni catalysts, have been designed for CO_2 reforming of methane and CO_2 methanation. The structure-activity relationship of the catalysts was elucidated as well. Our work highlights the significance of the nanostructures and provides guideline for synthesis of novel catalysts for CO_2 conversion. **Keywords:** Nickel, Nano, CO_2 .

1. Introduction

Conversion of CO_2 into useful chemicals is of great importance in both fundamental research and industrial application¹. Ni catalysts are most widely investigated candidates for CO_2 reforming of methane into syngas and CO_2 hydrogenation into methane. The prime bottleneck of Ni catalysts in both technologies lies in rapid deactivation due to carbon deposition and/or metal sintering. Recently, a number of studies have demonstrated that nanostructured catalysts would deliver exceptional activity and stability². Herein, several nanostructured Ni catalysts have been designed for CO_2 reforming of methane and CO_2 methanation³⁻⁸.

2. Experimental

SiO₂ nanofibre confined Ni catalyst was synthesized by the electrospinning technique, being labelled as Ni/SiO₂-F. The commercial SiO₂ powder impregnated Ni catalyst was prepared as a reference and labelled as Ni/SiO₂-C. The carbide derived carbon (CDC) layer was grown over SiC surface by exposing the commercial α -SiC sample to Ar saturated CCl₄ vapor at 800 °C for 1 h. A Ni/CeO₂-CDC-SiC catalyst was synthesized by a co-impregnation method. A reference catalyst of Ni/CDC-SiC was prepared with a similar procedure without CeO₂ promoter. An Al₂O₃-coated SiC, Al₂O₃@SiC was synthesized by the evaporation-induced self-assembly (EISA) method. A reference sample, Al₂O₃-SiC was synthesized by the deposition-precipitation method. The Ni/Al₂O₃@SiC and Ni/Al₂O₃-SiC catalysts were prepared by the incipient wetness impregnation method. The catalysts were characterized with N₂ sorption, XRD, SEM, HR-TEM, TG/DTA, XPS and H₂-TPR/O₂-TPO/CO₂-TPD/NH₃-TPD measurements. The catalystic test was performed under atmospheric pressure in a tubular quartz reactor (i.d. 8 mm). Before reaction the catalyst was reduced in a H₂ stream. The effluent gases were analyzed by an online gas chromatograph.

3. Results and discussion

STEM image of the fresh Ni/SiO₂-F catalyst (Figure 1) clearly demonstrated that most of the Ni nanoparticles were confined in the SiO₂ nanofibre. Compared with the Ni/SiO₂-C counterpart, the Ni/SiO₂-F catalyst exhibited slightly higher initial activity and much better stability (Figure 2). Structural characterizations revealed that the slightly higher activity was ascribed to the improved dispersion of Ni, and the much better stability was due to the significantly alleviated carbon deposition. The SiO₂ nanofibre confined Ni catalyst possessed much stronger metal-support interaction and more abundant basic sites, leading to an enhanced coke-resistance property. Al_2O_3 nanofibre confined Ni catalyst with superior

reforming performance was successfully synthesized by the electrospinning technique as well, reflecting the versatility of this technique.

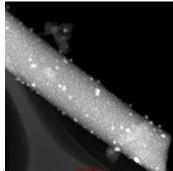


Figure 1. STEM image of the fresh Ni/SiO₂-F catalyst.

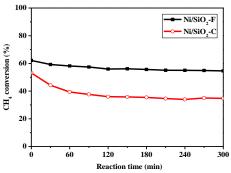


Figure 2. Catalytic performances of the Ni/SiO₂ catalysts

A ceria-promoted Ni/CDC-SiC catalyst with enhanced activity and improved stability for CO_2 reforming of methane has been successfully synthesized and systematically characterized. N₂ sorption data showed an increased BET specific surface area after the addition of CeO₂ promoter. XRD and TEM results revealed a smaller size of Ni nanoparticles on the CeO₂-promoted catalyst, which would lead to an enhanced reforming activity. High resolution TEM image and EDX elemental mapping results documented the abundant Ni-CeO₂ interfaces on the CeO₂-promoted catalyst. High resolution XPS of Ce 3d revealed the presence of Ce³⁺ state, implying the defect structure of CeO₂ promoter and the formation of oxygen vacant sites. The excellent redox properties of CeO₂ promoter was proposed to explain the superior coke resistance property, which resulted in an improved stability.

An Al₂O₃-coated SiC supported Ni catalyst, Ni/Al₂O₃@SiC was designed via the EISA method followed by an incipient wetness impregnation for CO₂ methanation. Compared with the Ni/Al₂O₃-SiC and Ni/SiC catalysts, the Ni/Al₂O₃@SiC catalyst exhibited enhanced activity. The CO₂ conversion of the Ni/Al₂O₃@SiC catalyst reached 72.9% at 300 °C and a maximum of 78.8% at 350 °C. The excellent activity of the Ni/Al₂O₃@SiC catalyst was mainly due to the tiny size of Ni nanoparticles and the mesoporous structure of Al₂O₃ layers on the surface of SiC. Moreover, the Ni/Al₂O₃@SiC catalyst exhibited an excellent long-term stability at 350 °C under atmospheric pressure.

4. Conclusions

First, nanoconfined Ni catalysts have been synthesized via the electrospinning technique for CO₂ reforming of methane. Compared with the conventionally impregnated Ni/SiO₂ catalyst, the SiO₂ nanofibre confined Ni catalyst exhibited improved metal dispersion and enhanced metal-support interaction, leading to higher activity and better stability. Second, a nanocomposite Ni/CeO₂-CDC-SiC catalyst consisting of Ni-CeO₂ interfaces on a nanoporous carbide-derived carbon (CDC) layer over SiC support was designed with improved coke resistance and better stability. Third, an Al₂O₃-coated SiC, Al₂O₃ @SiC was designed via the EISA method to serve as a nanocomposite support for Ni catalysts in CO₂ methanation. The Ni/Al₂O₃@SiC catalyst exhibited excellent initial activity and superior long-term stability in CO₂ methanation due to high metal dispersion and proper physiochemical properties.

References

- 1. Z.-j. Wang, Y. Zhao, L. Cui, H. Du, P. Yao, C.-j. Liu, Green Chem. 9 (2007) 554.
- 2. Z.-j. Wang, M. Wei, L. Jin, Y. Ning, Q. Fu, X. Bao, Nano Res. 6 (2013) 399.
- 3. S. Wen, M. Liang, J. Zou, S. Wang, X. Zhu, L. Liu, Z.-j. Wang, J. Mater. Chem. A 3 (2015) 13299.
- 4. L. Liu, S. Wang, Y. Guo, B. Wang, P. Rukundo, S. Wen, Z.-j. Wang, Int. J. Hydrogen Energy 41 (2016) 17361.
- 5. J. Zou, X. Mu, W. Zhao, Z.-j. Wang, Catal. Commun. 84 (2016) 116.
- 6. Y. Guo, J. Zou, X. Shi, P. Rukundo, Z.-j. Wang, ACS Sustainable Chem. Eng. 5 (2017) 2330.
- 7. J. Sun, S. Wang, Y. Guo, M. Li, H. Zou, Z.-j. Wang, Catal. Commun. 104 (2018) 53.
- 8. J. Sun, Q. Feng, Y. Fang, Z.-j. Wang, S. Ji, Submitted.