Development of a Titanium Dioxide-Supported Gold Nanoparticle Catalyst for the Selective \(N\)-Formylation of Functionalized Amines Using Carbon Dioxide

Shu Fujita,\(^a\) Tatakō mitsudome,\(^a\) Zen Maeno,\(^a\) Tomoo Mizugaki,\(^a\) Koichiro Jitsukawa,\(^a,\)* Kiyotomi Kaneda\(^a,b\)

\(^a\)Department of Materials Engineering Science Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
\(^b\)Research Center for Solar Energy Chemistry, Osaka University, Osaka, 560-8531, Japan

\(\ast\) Koichiro Jitsukawa: Fax +81-06-6850-6261, E-mail jitkk@cheng.es.osaka-u.ac.jp

Abstract: A titanium dioxide-supported gold nanoparticle catalyst efficiently promoted the selective \(N\)-formylation of various amines using \(\text{CO}_2\) as a carbonyl source under the pressured hydrogen conditions. The \(N\)-formylation of amines proceeded in high selectivity with reducible functional groups, such as olefin, carbonyl, cyano, halogen, amide and carbamate moieties, retaining intact. Furthermore, the catalyst after the reaction was easily recovered by filtration and reused without any loss of catalytic activity or selectivity.

Keywords: Gold nanoparticle, Formylation, Heterogeneous catalyst.

1. Introduction

Formamides are important intermediates for the production of pharmaceuticals, insecticidal agents, and fine chemicals. The formamides are currently synthesized by \(N\)-formylation of amines using toxic carbon monoxide as a carbonyl source or using hydrosilanes as reducing reagents and \(\text{CO}_2\) as a carbonyl source with low atom efficiency. Recently, the green catalytic \(N\)-formylation of amines using \(\text{CO}_2\) and molecular hydrogen (\(\text{H}_2\)) is attracting much attention. In this reaction, nontoxic \(\text{CO}_2\) is used as a carbonyl source and water is produced as the sole byproduct. However, this method has crucial problems. The \(N\)-formylation of amines generally requires high pressure of \(\text{H}_2\) at high temperature, which cause the hydrogenation of reducible functional groups, such as olefin, carbonyl, cyano, halogen, amide and carbamate moieties. Therefore, the selective \(N\)-formylation of amines with reducible functional groups is a challenging issue.

Herein, we report that the unique catalytic activity of titanium dioxide-supported gold nanoparticle catalyst (\(\text{Au/TiO}_2\)) for \(N\)-formylation of functionalized amines using \(\text{CO}_2\) as a carbonyl source under \(\text{H}_2\) atmosphere.\(^1\) For example, \(\text{Au/TiO}_2\) enables the selective \(N\)-formylation of 5-hexene-1-amine with retaining the carbon-carbon double bond while previous catalysts cause the hydrogenation (Scheme 1). The present \(\text{Au/TiO}_2\) catalytic system is applicable to the \(N\)-formylation of various amines with other reducible functional groups, giving the corresponding products in excellent yields.

\[\text{NH}_2 + \text{H}_2 + \text{CO}_2 \rightarrow \text{H}_2\text{O} \]

Scheme 1. \(\text{Au/TiO}_2\)-catalyzed selective \(N\)-formylation of 5-hexene-1-amine using \(\text{CO}_2\) and \(\text{H}_2\)

2. Experimental

\(\text{Au/TiO}_2\) was synthesized as follows. \(\text{TiO}_2\) was treated with aqueous \(\text{HAuCl}_4\) solution at room temperature in the presence of aqueous \(\text{NH}_3\). The resulting slurry was filtered, washed with deionized water and dried at room temperature in \textit{vacuo} to afford \(\text{TiO}_2\)-supported Au\(^{\text{III}}\) species as a light yellow powder. Treatment of this powder with \(\text{KBH}_4\) yielded \(\text{Au/TiO}_2\) as a purple powder. A typical reaction procedure for \(N\)-formylation is as follows. \(\text{Au/TiO}_2\) was placed in a stainless steel autoclave (with a Teflon inner cylinder) followed by
addition of amine and solvent. The reaction mixture was stirred under the pressured CO$_2$ with H$_2$. After the reaction, Au/TiO$_2$ was removed by filtered and the yield was determined by GC analysis.

3. Results and discussion

Au/TiO$_2$ showed high activity for the N-formylation of 5-hexen-1-amine (1) to afford the desired product (2) with retaining the olefinic moiety during the reaction under 20 atm of CO$_2$ and 30 atm of H$_2$ (Scheme 2). In sharp contrast, the TiO$_2$-supported other metal nanoparticles, such as Pd, Ru, Pt, Rh, Ag and Cu, did not afford 2 at all and the olefinic moiety of 1 was hydrogenated. Moreover, Au nanoparticles on the other supports, such as ZnO, CeO$_2$, Al$_2$O$_3$ and Nb$_2$O$_5$, catalyst were inactive for this reaction. From the above results, a combination of Au nanoparticles and TiO$_2$ specifically enable selective N-formylation of 1.

This Au/TiO$_2$ catalytic system is applicable to other amines with a wide range of reducible functional groups (Table). A series of reducible functional groups, such as olefin (entries 1 and 3), carbonyl (entry 4), cyano (entry 5), halogen (entries 6 and 7), amide (entry 8), and carbamate (entry 9) moieties, were completely retained during the N-formylation. In addition, the corresponding products were obtained in excellent yields without any by-products. From these results, Au/TiO$_2$ is completely inactive for diverse functionalities.

Au/TiO$_2$ is easily removed by filtration from the reaction mixture after the reaction. Inductively coupled plasma atomic emission spectra (ICP-AES) analysis of the resulting filtrate showed the absence of Au species in the filtrate (detection limit of 0.1 ppm), proving no leaching of Au species during the reaction. The recovered Au/TiO$_2$ catalyst is reused without any loss of activity or selectivity for the N-formylation of 1 even after the 5th recycling experiments (Table, entry 2).

4. Conclusions

A highly selective N-formylation of functionalized amines using CO$_2$ with H$_2$ was achieved by the Au/TiO$_2$ catalyst. Au/TiO$_2$ efficiently promoted for the first time the selective N-formylation of various amines to corresponding formamides in excellent yields without hydrogenation of reducible functional groups. This catalyst was reusable without any loss of catalytic activity or selectivity.

Reference