No. 65 April 1, 2014

触媒学会シニア懇談会

表面反応場は捉えられたか

松島龍夫(北大名誉教授)

金属触媒表面上の反応場の同定・解析は 半世紀前ではほとんど夢物語であった。私 はこの夢を追い続けたが定年までには実現 できなかった。最近の脱離ダイナミクスの 進展からみて、次の世代では実現できると 感じている。

1. はじめに

金属表面上の反応場の同定・解析には表 面分光法、回折法、走査トンネル電子顕微 鏡(STM)等の使用が一般的である。しか し、これらの表面化学種の観測は反応場の 構造を理解するうえで有用ではあるが、反 応そのものではないから、反応場の観測と しては間接的である。反応中の触媒表面の 分光観測で、反応に参加する表面種と参加 しない化学種の区別は出来ても、依然とし て見ているのは素反応前あるいは反応後の 化学種であり、反応そのものではない。反 応場の直接的特定には反応そのものから反 応場の構造情報を取り出す手法が必要であ る。ここでは脱離過程に使える手法を解説 するが、その優位性は脱離分子から表面サ イトをみる特有の視点の外に、活性種の量 が表面分光法の検出限界以下の場合に顕著 となる[1]。

化学反応では化学種の変換と同時にエネ

ルギーの再分配が起る。上記の分光法等に よる観測は前者の化学種の変換の評価には 有効であるが、後者のエネルギー分配は見 えない。反応系内でのエネルギー保存が容 易な気相反応では、これら両面からの研究 は 1920 年代後半の化学発光の解析から既 に始まっている。1960年代以降の交差分子 線法の改良で、エネルギーを選別した化学 種同士の反応から放出される生成分子の空 間分布、並進速度、内部エネルギーまで解 析されて、反応中のエネルギー分配を検討 する state-to-state chemistry が 1970 年代に確 立している[2,3]。そこでは反応場の解析が potential-energy-surface (PES) の構築という 形で進行する。これらと対比すると表面反 応の機構研究は物質変換の頻度の解析(い わゆる chemical-kinetics) に偏重してエネル ギー分配の側面を無視するので反応の全体 像が見えていない。もちろん、生成直後の 分子から下地金属表面への速いエネルギー 移動(ピコ秒の桁)が解析の壁になってい るのだが、現象の一面しか見ていないこと は反応の記述としては本質的に不完全で、 表面反応の理解を現象論に留めることにな っている。

脱離化学種の空間分布から表面構造を見 る手法には既に電子刺激脱離イオン角度分 布 (electron-stimulated desorption ion angular distribution; ESDIAD) がある。そこでは表面分子を電子(或いは光)衝撃で分解し放出される高速の切れ端(fragment; 主にイオン)の空間分布を観測する。Fragment は多くの場合、切断される結合軸の延長上に集中放出される。分子が傾いていれば、それに応じた off-normal の位置に fragment の放出が集中するので分子軸の傾き角を決定できる。

この手法と比較すると、表面熱反応の生 成分子の並進速度は高速(hyper-thermal)と はいっても桁違いに小さいから、空間分布 の構造が ESDIAD の場合より不鮮明である。 さらに空間分布と表面構造との関係は後述 のように生成分子の脱離機構とエネルギー 分配に依存する。この複雑さがこの手法の 発展を遅らせている。ESDIAD の原理(切 断分子軸方向の保存)の簡明さと対照的で ある。現在では PES を評価するには気相反 応と同じように、放出角の関数として生成 分子の並進と内部エネルギーを同時に測定 する必要があると分かってきた。最後の章 で述べる新しいレベルの測定はまだ報告さ れていないので、若い研究者が挑戦してほ しい課題である。

2. 構造をみる脱離ダイナミクス前夜;水素 脱離の舞台と限界

大きな熱浴の金属表面から放出される分 子は表面温度にまで平衡化されていると考 える時代は永く続いた。放出分子の空間分 布は余弦則《<u>熱平衡系における脱離分子の</u> 分布。どの脱離方向にも同じ密度で分子が 放出される。単位表面積当たりでは脱離分 子数は脱離角(polar-angle; 表面垂直から測 <u>る角度)の余弦に比例する</u>≫に従い、並進 及び内部エネルギーは表面温度の Maxwell-Boltzmann 分布に従うとされてい た。

この考えは 1968 年の Willigen の実験報告 で破られた。彼の報告≪金属表面からの脱 離水素の分布は表面垂直方向に鋭く集中す る場合がある≫は、分子が表面から反発さ れて脱離することを示すので、放出分子か ら脱離サイトの特定を目的として、米、英、 独、墺では単結晶表面からの脱離水素の空 間分布・並進速度分布の測定がすぐさま開 始された。この場合反応は会合脱離 2H(a)→H₂(g)である。3年後にはニッケル表 面上の並進速度分布がマサチュセッツ工大 (米)から報告され、更に6年後には精度の高 い並進速度測定が Jűlich 表面研(独)から 報告された[4]。Ni(111)上の結果では、並進 温度は①表面垂直方向では表面温度の2倍 以上、260度より大きい脱離角では表面温 度より低い、③共存する吸着種に影響され るなど、脱離分子が表面の構造情報を供す ることを予感させた。

ところが水素分子からの脱離サイトの特 定は現在もできていない。≪<u>高速で脱離す</u> <u>る生成分子から反応場の構造情報を引き出</u> <u>すには角度分解測定が不可欠である。脱離</u> <u>分子は表面から受ける反発力をその物理量</u> <u>(flux; energy)の異方性の形で保存してい る。個々の脱離分子は構造情報の一部しか</u> <u>持っていない。このため脱離サイトの形状</u> <u>はこれらの量を脱離角・結晶方位角の関数</u> <u>として集めて構築される。</u>≫

空間分布の鋭い(並進速度が大きい)Cu 表面からの脱離水素は良く調べられた。 Cu(111)、Cu(100)、Cu(110)表面から脱離す る水素はいずれも表面垂直方向に鋭く分布 するが、この分布の鋭さは結晶方位角に依 存 し な い 。 ス テ ッ プ 表 面 Cu(310)=(s)[3(100)×(100)]でも同様で、分布 は結晶方位角に依存しない。即ち、放出さ れる水素分子には表面構造の情報はないと 悲観的なものであった[5]。この構造鈍感性 は脱離する生成分子 (CO_2 , CO, N_2 , H_2 等) の内部エネルギー測定が角度分解されない で永く継続する状況を誘発し、脱離からの 表面構造解析への努力を弱めた[6-9]。脱離 理論も内部エネルギーの脱離角・結晶方位 角依存が無視されて組み立てられていった。

水素分子の核間距離は金属原子の直径の 約4分の1しかなく、反応の始状態にある H(a)は分子形成中に大きく移動する(表面 から離れる)ので表面原子の作る凹凸が空 間分布に反映しにくいとみられた。この状 況は等核分子の形成では生じやすいので、 脱離分布が表面構造に敏感と期待して選択 したのは貴金属表面上の CO 酸化である。 CO 酸 化 の CO₂ 形 成 で あ る CO(a)+O(a)→CO₂(g)では強い金属—O(a)結 合の切断が CO₂脱離の最終段階と見られ、 表面拡散が容易な CO(a)は O(a)の位置で CO₂に変換するとみられので、O(a)近傍の形 状が CO₂の空間分布に反映され易いと予測 した。

説離の異方性;生成分子 CO₂の解析と その限界

1970 年代では表面科学が化学分野に展開し、金属表面上の多くの触媒反応の機構が書きかえられた。その代表が白金族金属面上の CO 酸化で、半世紀以上も信じられてきた Eley-Rideal 機構

($CO(g)+O(a)\rightarrow CO_2(g)$) か ら Langmuir-Hinshelwood(LH)機構 (CO(a)+ $O(a)\rightarrow CO_2(g)$ への移行であった。80 年代 の初めには変調分子線法と同位体追跡法が ほぼ同時に、 CO_2 生成は LH 機構でのみ進 行することを確認し、論争の続いた両機構 の並立時代は終わった。この生成 CO_2 の脱 離も Pt(111)、Pd(111)、Pd(100)上などでは 表面垂直方向に集中し、表面から反発され ている。

こうして小生の角度分解脱離測定は昇温 脱離法(temperature-programmed desorption; TPD)を用い CO 酸化から始め た。 角度分解昇温脱離 (angle-resolved(AR)-TPD) 装置は3つの部 屋からなる簡単な差圧型超高真空装置であ るが多くのトラブルを経験した。角度分解 脱離測定では大きな排気速度(通常の超高 真空装置の10倍以上)が不可欠で、最初の 装置では液体窒素温度の冷却部で排気速度 を増やしたので TPD 条件下で生成する CO₂しか測定出来なかった。脱離分子の空 間分布と表面構造の関係で異なる吸着構造 を作りやすい低温域が情報が多いとの期待 があった。脱離 CO2の異方性分布の発表は 1989 年で Pd(110)上の CO 酸化である。こ れが表面熱反応の生成分子で最初の異方性 分布の報告である。この年に所属研究所が 廃止され、流動部門の一員として岡崎分子 研に2年間移動、分子線グループと共同で、 角度分解昇温脱離法と相関チョッパー飛行 時間(time-of-flight; TOF)法を統合した。 この技術は北大に戻り定常反応の角度分 解・飛行時間法に発展した。

H₂の脱離ではみえなかった空間分布の 異方性は CO 酸化の脱離 CO₂では確かにみ えたが、構造異方性の大きい表面に限られ た。例えば Pd(111)や Pd(100)上では CO(a)+O(a)の混合表面は吸着構造が吸着 量の増加で大きく変化するが、そこから放 出される CO₂の分布の鋭さは変化するが異 方性は確認できず CO₂生成サイトを特定で きない。下地の表面構造を変化させると空 間分布も変化する。例えば Pt(110)(1×1)と再 配列した Pt(110)(1×2) (傾いたテラスが交互 に並ぶ構造) では分布は大きく異なる。確 かに空間分布は表面構造情報を持っている。 ステップ構造の Pt 表面では多くの場合 CO₂ は傾いたテラスの垂直に脱離する。し かし反応場がテラスの何処の特定はできな い[10]。

脱離サイト (反応場) はもちろん"点" ではなく広がりをもつ。正確な表現には反 応の PES 図が必要である。この作成のため に CO_2 が生成脱離するときのエネルギー分 配と表面構造との関係を知る必要がある。 ここで必要なのは遷移状態 (transition-state; TS)の構造情報である。 TS の構造は密度汎関数法 (density-functional-theory; DFT) 計算等 で提案されるが実験的にどのように確認す るかが問題なのである。その寿命は極めて 短く分光学的には確認できない。脱離ダイ ナミクスは TS の構造を検証できるのか?

脱離分子の内部エネルギー測定には、脱 離分子が発する赤外光の分光や多光子共鳴 吸 収 イ オ ン 化 (resonance-enhanced multi-photon ionization; REMPI)が使われる。 前者は化学発光法で振動・回転温度を決め る。後者では表面のごく近傍にレーザー光 を集光して、各量子状態毎に脱離分子をイ オン化し、その TOF 測定を行い、振動、回 転、並進エネルギーを同時に決定する。こ れらはいずれも角度分解されない形で使わ れたので、内部エネルギーの脱離角依存が 無視された。表面熱反応の生成分子の内部 エネルギーの脱離角依存の報告は 2008 年 と遅れ[11]、その著しい脱離角・方位角依存 性は一度は構築された脱離ダイナミクス理 論に大きく修正を迫ることになった[1]。

脱離分子から表面の構造情報を取り出す には分子の物理量(分子 flux、並進速度、 各振動・回転準位の分子分布)を脱離角の 関数として調べることが不可欠である。並 進エネルギーが脱離角や結晶方位角に依存 することは早くから分かっていたが、振 動・回転エネルギーの脱離角度依存の測定 が困難であった[12]。

4. エネルギー分配と遷移状態の構造

脱離する生成分子の回転・振動エネルギ ーが脱離角・方位角に依存するモデルの構 築はまだ初歩的段階である。観測がまだ CO₂分子だけであるのでREMPIが使えず、 赤外発光分光によるので感度が低く状態を 区別した測定ではない。それでも以下のこ とが明らかとなった。Pd(111)面の CO 酸化 から放出される CO2 は脱離角を増すと並進 温度は減少し、回転温度は増加する[11]。こ こに脱離におけるエネルギー分配のモデル を提案した。遷移状態にある分子が表面か ら反発力を受ける時、エネルギーが並進と 回転モードに分配される。その度合いは気 相反応のダイナミクスで使われる原理と同 じで、反発力の方向と分子の傾きの関係に 支配される[13]。反発力が分子の重心に働 く場合エネルギーは並進モードに移動する (図1)。重心からずれると回転と並進モード

- 図1 反発脱離でのエネルギー分配モデル;
 (a) サイトから生じる反発力が TS 分子の重心に働くと並進モードにエネルギーが流れる。反発力が重心からずれる(分子が傾いている)と回転モードが励起される。
- (b) 並進・回転温度の脱離角依存;
- 表面垂直では高速成分が多く、大きい脱離 角では低速成分(回転エネルギーが高い) が相対的に多く見える。この極座標図では 鋭い脱離分布の成分と余弦則成分の全分 子数の比を1:2と仮定している[1]。回転 モードに多くエネルギーを受けた成分を 余弦則分布にした。

このモデルでは平らな表面で反発力が表面 垂直に向いている場合、TS が傾いている場 合は回転と並進が励起される。実際の反応 系では分子軸の傾き角は最適構造を中心と して分布しているので、並進と回転モード へのエネルギー分配の程度を脱離角度の関 数として観測すれば傾き角を検討できる。

Pd(110)上の CO 酸化から放出される CO₂ は表面垂直に指向するが異方性が著し

い。表面の[110]方向に沿う面内の CO_2 の分 布は幅広く余弦則に近いが、これに直交す る方向では $cos^{10}\theta(\theta$ は脱離角-polar-angle) と大変鋭い。この方向では脱離角を増すと、 並進温度も回転温度も急減する[10,11]。一

方、[110]方向に沿う脱離角度の変化には並 進温度も回転温度も鈍感である。これは表 面から反発されるとき分子は[110]方向に はじかれ易く、その回転・並進モードにエ ネルギーを受け取り易いのである。上記の エネルギー分配モデルで考えれば反発を受

ける TS 状態では CO₂の分子軸は[110]方に 傾いていることになる。回転温度と並進温 度を同時に脱離角度の関数として測ればこ のモデルを確認できるはずであるが、CO₂ 分子の状態選別イオン化はまだ出来ていな いので PES の構築が出来ない。

5. 理想的な脱離系と次世代の測定法

実験測定の立場からいえば脱離系は次の 性質を持つことが望ましい。

脱離生成分子の物理量に著しい異方性。

② 生成脱離分子の状態別イオン化が可能。

③ 脱離過程は並進と回転モードを励起す る。

水素の会合脱離 2H(a)→H₂(g)は条件①を満 足しない。白金族金属上の CO₂生成反応は 条件②を満足しない。上記の3条件を全て 満足すると予想される脱離過程はNO還元 に含まれる低温域のN₂放出過程 N₂O(a) \rightarrow N₂(g)+O(a)である。この中間体分 解過程は基礎化学と応用化学の両面で興味 深く、上記の測定にも有望である。最有力 のNOx処理触媒であるRh、Pd上でN₂O 中間体説は既に36年も前から繰り返し提 案されているが、未だ市民権を持たない。 NO還元中の触媒表面上にN₂O(a)を表面分 光法で確認できないためである[14]。約 450K以上の触媒反応中の表面でN₂O(a)の 寿命はナノ秒程度(吸着熱が約35kJ/mol) で表面分光法では検出が難しい。脱離のダ イナミクスではこの分解過程を確認できる。

N₂O(a)の熱分解で放出される N₂の空間 分布は独特である(図 2)。Pd(110)上の定常 反応 N₂O+CO \rightarrow N₂+CO₂ で放出される N₂ は[001]方向に沿う面内で斜め2方向に鋭く 分布する。N₂O+D₂ でも同様である。清浄 な Pd(110)上の N₂O(a)の熱分解を AR-TPD で観測すると 130K 以下の低温域で同様の 空間分布の N₂の脱離が観測される。低温の STM や X-線吸収端微細構造分光

(NEXAFS) で N₂O i[001]方向に寝て吸 着していることも確認されている。同様な 斜めの N₂ 脱離が Rh(110)、Ir(110)、Rh(100) 上の N₂O 分解でも観測される。この特有の N₂ 脱離は NO+CO (或いは NO+D₂) の定 常的触媒反応中でも Pd(110)、Rh(100)上で 約 600K 以下で観測できる[15]。NO 還元に おける N₂O 中間体の確認である。より高温 域では 2N(a)→N₂(g)が優勢となり N₂の空 間分布は変化する。

この斜めの脱離機構は 10 年ほど前から理 論分野で話題となり、swing-desorption モ デルが提案された[1,16]。N-N-O 分子は直 線分子であるが金属表面上で N₂ 放出に都 合が良いのはNとO両端で吸着する構造で、 確かに[001]方向に配向すると DFT 理論で は安定である。DFT 理論では N--N--O 中の NO 結合が切れ易い。そのときに N-metal 結合はまだ切れていない。したがって N--O 間の反発で N₂ 分子は N 端を基点に反転

(swing)して脱離すると予測される(図 3)。 DFT 計算で分解をみると $N_2(a)+O(a)$ が反 応の終点であるが、実際には $N_2(a)$ の脱離温 度以下でも $N_2O(a)$ 分解で高速の N_2 が斜め に放出されるで、基底状態を扱う DFT では 記述が不十分である。脱離直前の N_2 は高い 運動エネルギーを持ち N-metal 結合を切断 し 脱 離 す る 。 現 在 分 子 動 力 学 (molecular-dynamic : MD) 計算が実行さ れているので近く発表されるでしょう。

図 2 Pd(110)上の定常的触媒反応 N₂O+CO→N₂(g)+CO₂で放出される N₂の 空間分布 (極座標表示)。表面温度 520K[15]。

図3 N₂の swing-desorption モデル。吸 着 N₂O は両端で吸着、[001]方向に配向し 折れ曲がっている[15]。NO 結合の切断後、 反発力が N と O の間に生じ、N₂部分が反 転し脱離する[1]。

この分解脱離は上記の理想的測定系の3 条件を満たしている。顕著な異方性。N2の REMPI は十分な状態分解能。この脱離では N2分子は回転・並進ともに励起されている。 では上記の swing-desorption を実験的に検 証するにどうすればよいか?このモデルで は表面に残る酸素から脱離する N2 への反 発力が回転と並進モードに変換される。N2 の脱離の指向方向では並進エネルギーは最 大、この角度から離れる程減少する。一方 N2の回転エネルギーは増加すると予測さ れる。N2の並進と回転エネルギーを同時に 角度の関数として測定すれば、その相関か らモデルを確認できる。これは角度分解で REMPI-TOF 測定をすることを意味する [1]。AR-REMPI-TOF は気相反応の研究で

は既に広く使われている測定法であるが、 表面熱反応ではまだ報告が無い。その難し さはシグナルの少なさであろう。角度分解 のためにはレーザー光によるイオン化域を 表面から離さねばならない。離せばシグナ ルが急減する。しかし、REMPI は高感度で あるので真空条件を十分検討し小型の差圧 排気システムを設計できれば難しい測定で はない。

表面からの反応性脱離は 1950 年代の表 面科学の始まりから最も良く研究された現 象である。しかし、上述の様に化学反応の 理解としては未だ初歩的段階である。 chemical-kineticsの理解レベルから脱出す るには新しい反応論から高い効率の触媒が 開発できることが必要かもしれない。

参考文献

- T. Matsushima, H. Orita, A. Kokalj, e-J. Surf. Sci. & Nanotech. **11** (2013) 65.
- [2] Y.T. Lee, L.D. McDonald. P.R. LeBreton, D.R. Herschbach, Rev. Sci. Instrum. 40 (1969) 1402.
- [3] R.D. Levine, R.B. Bernstein, Molecular Reaction Dynamics (Oxford University Press, Oxford, 1974).
- [4] G. Comsa, R. David, K.D. Rendulic, Phys. Rev. Lett. 38 (1977) 775.
- [5] M. Balooch, R.E. Stickney, Surf. Sci. 44 (1974) 310.
- [6] H.A. Michelsen, C.T. Rettner, D.J. Auerbach, Surface Reactions, Springer Series in Surface Sciences, Ed. R.J. Madix, Vol. **34** (Springer-Verlag, Berlin, 1994), p. 185.
- [7] C.T. Rettner, D.J. Auerbach, J.C. Tully,

A.W. Kleyn, J. Phys. Chem. **100** (1996) 13021.

- [8] A. Hodgson, Prog. Surf. Sci. 63 (2000)1.
- [9] A. Hodgson, in Surface Dynamics, Ed.
- D.P. Woodruff (Elsevier 2003) Chapter 6.
- [10] T. Matsushima, Surf. Sci. Rep. 52(2003) 1.
- [11] T. Yamanaka, T. Matsushima, Phys. Rev. Lett. **100** (2008) 026104.
- [12] T. Yamanaka, T. Matsushima, Rev.Sci. Instrum. **78** (2007) 034105.
- [13] J. C. Polanyi, Acc. Chem. Res. 5 (1972) 161.
- [14] E. Ozensoy, D.W. Goodman, Phys. Chem. Chem. Phys. 6 (2004) 3765.
- [15] T. Matsushima, Prog. Surf. Sci. 82(2007) 435.
- [16] I. Kobal, A. Kokalj, H. Horino, Y. Ohno, T. Matsushima, Trends Chem. Phys. 10 (2002) 139.

((2014.Feb.22)