Direct Dehydrogenative Conversion of Methane into Higher Hydrocarbons through Liquid-Metal Indium Catalyst

<u>Yuta Nishikawa,</u>^a Hitoshi Ogihara,^b Yuki Ohtsuka,^c Akira Nakayama,^c Jun-ya Hasegawa,^c Ichiro Yamanaka^{a,}*

^aDepartment of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S1-16, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan

^bDepartment of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255, shimoookubo, Sakura-ku, Saitama, 338-8570, Japan

^cInstitute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, 001-0021, Japan *Corresponding author: +81-3-5734-2144, E-mail address: yamanaka.i.aa@m.titech.ac.jp

Abstract: Dehydrogenative conversion of methane (DCM) is an attractive reaction. We already reported that liquid-metal indium supported on silica (In/SiO_2) was an effective catalyst for DCM. Characterization studies and kinetic studies indicated that liquid-metal indium catalyzed cleavage of a C-H bond of methane and coupling methane to ethane selectively. In addition, conversion of ethane and temperature-programmed reaction in ethane (TPR-C₂H₆) suggested that indium did not activate both a C-H bond and a C-C bond of ethane. Indium has the unique catalysis to activate only a C-H bond of methane, therefore, selectivity to hydrocarbons was still high despite high temperature.

Keywords: Methane conversion, Liquid metal catalysis, Indium catalysis.

1. Introduction

Methane (CH₄) is the main component of natural gas, which is an abundant energy sources in the earth. Most of CH₄ is currently used to generate electric power and heat because it is difficult to convert CH₄ to valuable compounds. Steam reforming of CH₄ to syngas (CO + H₂) and following catalytic reactions are only realized as industrial processes for utilization of CH₄. These processes need large amount of energy and costs because of mult-step reaction. Therefore, direct conversion of methane to chemicals and liquid fuels is a promising way to utilize natural gas.

In dehydrogenative conversion of CH₄, molybdenum/zeolite (Mo/zeolite) catalysts have been extensively studied and tested to overcome coke deposition^[1,2]. Recently, a few new DCM catalysts were reported. For example, Guo et al. reported the Fe/SiO₂ catalyst (single Fe sites in a silica matrix) to convert CH₄ to ethylene, benzene and naphthalene at >1223 K^[3]. We also reported the In/SiO₂ catalyst to convert CH₄ to ethylene, propylene and benzene^[4]. CH₄ conversion was 4.8% and selectivity to hydrocarbons was 75 % by the In/SiO₂ catalyst at 1173 K. In this work, we study detailed reaction mechanisms for the DCM reaction on the In/SiO₂ catalyst.

2. Experimental

The In/SiO₂ catalyst was prepared by a conventional impregnation method. Indium nitrate hydrate was dissolved in deionized water and CARiACT Q-3 (SiO₂ support) was added to the solution. The mixture was dried up at 393 K. This catalyst precursor was calcined at 773 K in air and was reduced with H₂ at 873 K. The DCM reaction tests were conducted using a fixed-bed quartz reactor (I.D. 12 mm) with In/SiO₂ (100 mg) and CH₄ (1 atm, 10 mL min⁻¹) was flowed. Hydrocarbons and H₂ were analyzed by gas chromatographs or an online mass spectrometer. In the cases of conversion of C₂H₆, 5% C₂H₆/Ar (1 atm, 30 mL min⁻¹) or 0.5% C₂H₆/H₂ (1 atm, 20 mL min⁻¹) was flowed. A Ni/SiO₂ catalyst as a reference one was prepared from nickel nitrate hexahydrate using the same method.

3. Results and discussion

Figure 1 (a)-(d) show the profiles of temperature-programmed reaction (TPR) from 323 K to 1173 K with 4 K min⁻¹ monitored by a mass spectrometer. In the TPR using CH₄ on In/SiO₂ (a), formation of C₂H₆ (m/z = 30) was observed from 800 K. On the other hand, no formation of C₂H₆ on SiO₂ (b).It was clear that indium catalyzed CH₄ activation and propylene and benzene were successively produced following the C₂H₆ formation. In the TPR using C₂H₆ on In/SiO₂ (c), significant products were not detected at 800 K. Formations of H₂ (m/z = 2) and CH₄ (m/z =16) were observed over 950 K, corresponding to conversion of C₂H₆ (m/z = 28, 30). In the case of SiO₂ (d), similar profiles were observed except for hydrogen production which was slightly suppressed by In/SiO₂. Figure 1 indicated that indium could activate a C-H bond of CH₄, however, a C-H bond of C₂H₆ cannot.

Figure 1. Mass spectra of temperature-programmed reaction in CH_4 over (a) SiO_2 and (b) In/SiO_2 and in C_2H_6 by (c) SiO_2 and (d) In/SiO_2 with 4 K min⁻¹.

To obtain more information of indium catalysis, conversion of C_2H_6 in H_2 was conducted. As references, results of no catalyst and Ni/SiO₂ catalyst were shown in Table 1. Ni/SiO₂ catalyst converted C_2H_6 into CH₄ and coke, therefore, a C-C bond of C_2H_6 was cleaved. On the other hand, dehydrogenation of C_2H_6 to C_2H_4 was mainly proceeded on In/SiO₂.

Catalyst	C_2H_6	Selectivity / %		
	conv. / %	CH_4	C_2H_4	Coke
Ni/SiO ₂	91	67	8	25
In/SiO_2	58	18	76	6
None	61	21	67	12

Table 1. C₂H₆ conversion in H₂ over Ni/SiO₂, In/SiO₂ and no catalyst at 1073 K.

The selectivities on In/SiO_2 were very similar to that of no catalyst. This indicated that distributions were thermodynamically decided. Indium cannot activate C-H and C-C bonds of C_2H_6 , therefore, carbon deposition was suppressed. In the presentation, DFT-calculation results will be discussed.

4. Conclusions

Results of TPR-CH₄ and TPR-C₂H₆ on In/SiO₂ indicated that indium could activate only a C-H bond of CH₄ but not a C-H bond of C₂H₆. Additionally, indium cannot cleave a C-C bond of C₂H₆ from the results of conversion of C₂H₆. These unique catalysis of In/SiO₂ for CH₄ and C₂H₆ results in higher selectivity to hydrocarbons in the DCM reaction.

References

- 1. L. Wang, L. Tao, M. Xie, G. Xu, J. Huang, Y. Xu, Catal. Lett., 21 (1993) 35.
- S. H. Morejudo, R. Zanon, S. Escolastico, I. Yuste-Tirados, H. Malerod-Fjeld, P. K. Vestre, W. G. Coors, A. Martinez, T. Norby, J. M. Serra, C. Kjølseth, Science, 353 (2016) 563.
- X. Guo, G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, D. Tan, R. Si, S. Zhang, J. Li, L. Sun, Z. Tang, X. Pan, X. Bao, Science, 344 (2014) 616.
- 4. Y. Nishikawa, H. Ogihara, I. Yamanaka, ChemistrySelect, 2 (2017) 4572.