Enhancement of CO Evolution by Modification of Ga₂O₃ with Rare-earth Elements for the Photocatalytic Conversion of CO₂ by H₂O

Kentaro Teramura^{a,b*}, Hiroyuki Tatsumi^a, Zeai Huang^a, Zheng Wang^a, Hiroyuki Asakura^{a,b}, Saburo Hosokawa^{a,b}, Tsunehiro Tanaka^{a,b*}

^aDepartment of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615–8510, Japan

^bElements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan

* Corresponding author: +81-75-383-2561, teramura@moleng.kyoto-u.ac.jp and tanakat@moleng.kyoto-u.ac.jp

Abstract: Modification of the surface of Ga_2O_3 with rare-earth elements enhanced the evolution of CO as a reduction product in the photocatalytic conversion of CO_2 using H_2O as an electron donor under UV irradiation in aqueous NaHCO₃ as a pH buffer, with the rare-earth species functioning as a CO_2 capture and storage material. Isotope experiments using ¹³CO₂ as a substrate clearly revealed that CO was generated from the introduced gaseous CO_2 .

Keywords: reduction of CO₂, photocatalysis, rare earth.

1. Introduction

Photocatlaytic conversion of CO₂ has recently drawn increased attention due to allowing direct solar-tochemical energy conversion. Kudo and his colleagues published a cutting-edge paper in the history of the photocatalytic conversion of CO₂ by H_2O_1 , in which Ag-loaded ALa₄Ti₄O₁₅ (A = Ca, Sr, Ba) exhibited a higher formation rate of CO than H₂ and evolved a stoichiometric amount of O₂.¹ In this case, more of the CO reduction product was generated than H₂. We found that Ag-loaded Zn-modified Ga₂O₃ demonstrated high conversion and good selectivity toward CO evolution in the photocatalytic conversion of CO2 with H2O as an electron donor, compared to several other recently reported photocatalysts.² X-Ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) analyses revealed that ZnGa₂O₄ was formed on the surface of the Ga_2O_3 , where it suppressed only the evolution of H_2 derived from water splitting. Actually, we reported that Ag-loaded ZnGa₂O₄ also exhibited photocatalytic activity with high selectivity toward CO evolution.³ The selectivity for CO evolution was dependent on the loading of the ZnGa₂O₄, and reached nearly 100% in the case of 3.0 mol% Zn-modified Ga₂O₃ with 1.0 wt% Ag co-catalyst. The rate of H₂ formation decreased exponentially with increased ZnGa₂O₄ loading, although the rate of CO formation was not changed. Thus, the next objective in this field is to enhance the rate of CO formation. We have already demonstrated that the solid base materials have an important role in the surface-capture of CO₂ molecules for the photocatalytic conversion reaction. It is well-known that rare-earth (RE) oxides react with H₂O and CO₂ to form carbonate species. On the basis of these very interesting features of RE elements, in this study, we used REs to modify the surface of Ga₂O₃ in order to more effectively capture and enhance the concentration of CO₂ near the surface for subsequent photocatalytic reduction.

2. Experimental

Ga₂O₃ was obtained by the calcination of gallium hydroxide (Ga(OH)₃), prepared via the hydrolysis of Ga(NO₃)₃ with an aqueous solution of NH₃, at 1273 K for 6 h. RE-modified Ga₂O₃ was prepared by an impregnation method. Ga₂O₃ was introduced to an aqueous solution of 0.1–10 mol% RE(NO₃)₃ (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Yb, or Lu). The suspension was stirred at room temperature for 1 h with ultrasonication, and then gradually evaporated to dryness at 323 K. The sample was calcined from 1023 to 1423 K for 6 h in air. Samples are designated according to their elemental composition as follows: 1.0 wt% Ag-loaded *x* mol% RE-loaded Ga₂O₃ is referred to as Ag/*x* RE/Ga₂O₃. The photocatalytic conversion of CO₂ using H₂O, including the Ag co-catalyst modification of the photocatalysts, was carried out in a quartz inner-

irradiation type reaction vessel (1.0 L) in a quasi-flow batch system. The synthesized photocatalyst (0.5 g) was dispersed in an aqueous solution of NaHCO₃ (0.1 M). CO₂ gas (99.999%) was bubbled into the solution at a flow rate of 30 mL min⁻¹. The suspension was irradiated with a 400 W high-pressure mercury lamp through a quartz filter equipped with a cooling water system. The CO, H₂, and O₂ products were analyzed by TCD-GC and FID-GC with a methanizer.

3. Results and discussion

Table 1 shows the rates of product formation in the photocatalytic conversion of CO_2 in an aqueous solution of 0.1 M NaHCO₃ over Ag/Ga₂O₃ with or without modification by 3.0 mol% RE under UV irradiation. As seen the XRD patterns of all the RE/Ga₂O₃, RE species could be observed in addition to the Ga₂O₃. As shown in the UV-Vis DRS of RE-modified Ga₂O₃, the band gap energies of the Ga₂O₃ and RE/Ga₂O₃ (except Ce/Ga₂O₃) are nearly the same. This indicates that the RE species do not influence the band structure of Ga₂O₃. In all cases, CO and H₂ are evolved as the reduction products from CO₂ and H⁺ by the generated electrons, respectively; in addition, stoichiometric amounts of O₂ are observed. Over all the RE-modified Ag/Ga₂O₃ and the selectivity for CO evolution exceeds 50%. With Ce modification, the rates of H₂, O₂, and CO formation decline compared to unmodified Ga₂O₃, whereas only a slight decrement is observed in the case of La. Relatively high rates of CO formation are obtained after modification with Yb, Dy, and Sm, although the other RE elements also enhance the rate. With the exceptions of Ce and La, RE modification largely enhances the activity of the photocatalyst, affording CO formation rates ~2.0–2.6 times that of Ag/Ga₂O₃. Thus, the modification with RE elements effectively enhances the evolution of CO.

Photocatalyst	Rate of gas evolved / μ mol h ⁻¹			Selectivity toward	a^{-}/b^{+}
	H ₂	O2	CO	CO evolution (%)	e m
Ga ₂ O ₃	141	67.3	4.8	3.3	1.08
Ag/Ga ₂ O ₃	169	116	80.7	32.3	1.08
Ag/3.0 Y/Ga ₂ O ₃	118	136	161	57.7	1.03
Ag/3.0 La/Ga ₂ O ₃	123	68.3	51.7	29.6	1.28
Ag/3.0 Ce/Ga ₂ O ₃	4.09	12.1	32.6	88.9	1.52
Ag/3.0 Pr/Ga ₂ O ₃	29.5	82.9	182	86.1	1.28
Ag/3.0 Nd/Ga ₂ O ₃	84.8	117	167	66.3	1.08
Ag/3.0 Sm/Ga ₂ O ₃	131	149	200	60.4	1.11
Ag/3.0 Gd/Ga ₂ O ₃	110	136	172	61.0	1.04
Ag/3.0 Dy/Ga ₂ O ₃	169	187	197	53.8	0.98
Ag/3.0 Ho/Ga ₂ O ₃	141	143	156	52.5	1.04
Ag/3.0 Er/Ga ₂ O ₃	93.0	151	194	67.6	0.95
Ag/3.0 Yb/Ga ₂ O ₃	144	171	209	59.2	1.03
Ag/3.0 Lu/Ga ₂ O ₃	144	151	160	52.6	1.01

Table 1 Rates of product formation in the photocatalytic conversion of CO_2^a

^{*a*} Photocatalyst weight: 0.5 g; CO₂ flow: 30 mL min⁻¹; solution volume: 1.0 L; additive: 0.1 M NaHCO₃; light source: 400 W Hg lamp; Ag loading: 1.0 wt%, RE loading: 3.0 mol%.

4. Conclusions

The modification of the surface of Ga_2O_3 with rare-earth (RE) elements improved the rate of CO formation in the photocatalytic conversion of CO_2 using H_2O as an electron donor. An experiment using isotopically labeled ¹³CO₂ and five blank tests clarified that the CO₂ introduced in the gas phase is reduced to CO under photoirradiation.

References

- 1. Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. J. Am. Chem. Soc. 2011, 133 (51), 20863-20868.
- (a) Teramura, K.; Wang, Z.; Hosokawa, S.; Sakata, Y.; Tanaka, T. *Chem. Eur. J.* 2014, 20 (32), 9906-9909; (b) Wang, Z.; Teramura, K.; Huang, Z.; Hosokawa, S.; Sakata, Y.; Tanaka, T. *Catal. Sci. Technol.* 2016, 6 (4), 1025-1032.
- 3. Wang, Z.; Teramura, K.; Hosokawa, S.; Tanaka, T. J. Mater. Chem. A 2015, 3 (21), 11313-11319.