Unique Au/α-Fe₂O₃ interfacial structures and their distinct catalytic behaviours in low-temperature CO oxidation and water gas shift reaction

Weijie Ji,^{a,*} Linli Gu,^a Qin Su,^a Wu Jiang,^a Yao Yao,^a Chak-Tong Au^b

^a Key Laboratory of Mesoscopic Chemistry, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

^b Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong

*Corresponding author: +86-25-89687761, E-mail: jiwj@nju.edu.cn

Abstract: Two α -Fe₂O₃ crystallites of regular morphology (truncated hexagonal bipyramid and quasi cubic) were controllably synthesized. The crystal facets of {113}, {214}, {104}, {110}, and {012} were identified. Au nanoparticles (2.3 nm ± 0.8 nm) were monodispersed on the substrate facets to achieve unique Au/ α -Fe₂O₃ interfacial structures and to compare the catalytic behaviours in CO oxidation and WGF reaction. The detailed characterizations clarified the key factors that determined catalytic activities of the two reactions. **Keywords:** Gold, Iron oxide, Interfacial catalysis.

1. Introduction

 α -Fe₂O₃ is widely used as a reducible substrate with good oxygen storage-release ability. There are α -Fe₂O₃ crystallites of certain morphology synthesized in recent years,^{15, 34-39} for the applications of sensing, magnetic property, and catalysis. Few studies, however, have been performed on the interfaces of metal/morphologically uniform Fe₂O₃ substrates. In conventional supported metal catalysts, metal particles of different size are randomly dispersed on various facets, and the observed metal support interaction is the average of many interfacial effects. In the present study, regularly shaped truncated hexagonal bipyramid α -Fe₂O₃ (α -Fe₂O₃-THB) and quasi cubic α -Fe₂O₃ (α -Fe₂O₃-QC) were synthesized as the substrates for precise Au deposition. Special attention has been paid to the effect of unique Au/ α -Fe₂O₃ interfacial structures on surface hydroxylation/oxygen adsorption and CO adsorption/activation, accounting for their distinct catalytic behaviours in CO oxidation and water gas shift (WGS) reaction.

2. Experimental

 α -Fe₂O₃-THB was synthesized using a K₄[Fe(CN)₆] 3H₂O solution containing sodium carboxymethyl cellulose, PVP-K30, and hydrazine hydrate. The mixture was hydrothermally treated at 160 °C for 6 h. The solids were washed, dried at 80 °C for 4 h, and air-calcined at 300 °C for 3 h. α -Fe₂O₃-QC was synthesized by changing the relative amount of K₄[Fe(CN)₆] 3H₂O to hydrazine hydrate. The rest preparation procedures were the same as those adopted for preparation of α -Fe₂O₃-THB. Au/ α -Fe₂O₃-THB and Au/ α -Fe₂O₃-QC were obtained by controlled deposition-precipitation approach. The nominal Au content is 3 wt% based on α -Fe₂O₃ weight. The samples were characterized by means of XRD, SEM/TEM, O₂(OH)-TPD, FTIR, and CO-TPSR. They were also evaluated in a fixed bed microreactor for CO oxidation and WGS reaction.

3. Results and discussion

The XRD investigation indicated that the substrate crystallites are pure phase in α -Fe₂O₃ form (JCPDS NO. 33-0664). The SEM images (Fig. 1) clearly show the two substrates are morphologically uniform. Through the HRTEM characterization and the inverse fast Fourier transform (IFFT) images as well as the schematic illustrations of structure model of α -Fe₂O₃-THB and α -Fe₂O₃-QC (Fig. 2), it was figured out that in the case of α -Fe₂O₃-THB, four seventh of whole surface belongs to the {113} facets, while two seventh and one seventh of surface belongs to the {214} and {104} facets, respectively. In the case of α -Fe₂O₃-QC, every one third of surface belongs to the {104}, {110}, and {012} facets, respectively. The HRTEM images (Fig. 3a, b) of Au/ α -Fe₂O₃-THB and Au/ α -Fe₂O₃-QC showed the mean Au particle size is 2.3 ± 0.8 nm and 2.3 ± 0.4 nm respectively. Note that although there are identical facets of {104} over α -Fe₂O₃-THB and α -

Fe₂O₃-QC, in the former case the {104} facet only covers 1/7 of surface while in the latter case it covers 1/3 of surface. The oxygen TPD study indicated that the O_{SL} on α -Fe₂O₃-QC is more reactive (Fig. 4a). Au deposition enhanced oxygen adsorption. However, the variation in O₂-TPD is insufficiently large to account for the deviation in catalytic activities (Fig. 3c). The OH-TPD profiles showed that there are surface OH groups distinctive in reactivity and density on Au/ α -Fe₂O₃-THB and Au/ α -Fe₂O₃-QC (Fig. 4b). XPS and CO-TPSR studies further demonstrated the function of surface OH/O_L species in reaction.

Complete CO conversion can be accomplished on Au/ α -Fe₂O₃-THB even at room temperature, and Au/ α -Fe₂O₃-THB certainly outperforms Au/ α -Fe₂O₃-QC. Similar situation can be observed for WGS reaction over Au/ α -Fe₂O₃-THB and Au/ α -Fe₂O₃-QC (Fig. 3d). However, the reaction rates on α -Fe₂O₃-QC are notably higher than that on α -Fe₂O₃-THB. In-situ FTIR study (Fig. 4b) clearly demonstrated that the CO adsorption especially the evolution of surface carbonate intermediates on both the Fe₂O₃ substrates and the Au-loaded samples are considerably different, which should be closely responsible for the significant variation in their catalytic performances.

Figure 1. SEM images and schematic diagrams of α -Fe₂O₃-THB (left) and α -Fe₂O₃-QC (right).

Figure 2. (HR)TEM and IFFT images of Au/ α -Fe₂O₃-QC (top) and Au/ α -Fe₂O₃-THB (down).

Figure 3. HRTEM images of (a) Au/α-Fe₂O₃-THB and (b) Au/α-Fe₂O₃-QC; CO conversion in (c) CO oxidation and (d) WGS.

Figure 4. Mass spectra of (a) oxygen and (b) surface hydroxyl TPD as well as FTIR spectra of CO adsorption/reaction over (c) Au/α -Fe₂O₃-THB and (d) Au/α -Fe₂O₃-QC (α -Fe₂O₃-HS and Au/α -Fe₂O₃-HS were employed as reference samples).

We greatly appreciate the financial support from NSFC (21173118, 21373110) and MSTC (2013AA031703).

References

- 1. Y. Li and W. J. Shen, Chem. Soc. Rev.43 (2014) 1543.
- 2. J. Z. Yin, Z. N. Yu, F. Gao, J. J. Wang, H. Pang and Q. Y. Lu, Angew. Chem. Int. Ed. 49 (2010) 6328.